-The current retrieval methods are essentially based on the string-matching approach lacking of semantic information and can't understand the user's query intent and interest very well. These methods do regard as the personalization of the users. Semantic retrieval techniques are performed by interpreting the semantic of keywords. Using the text summarization allows a user to get a sense of the content of a full-text, or to know its information content, without reading all sentences within the full-text.In this paper, a semantic personalized information retrieval (IR) system is proposed, oriented to the exploitation of Semantic Web technology and WordNet ontology to support semantic IR capabilities in Web documents. In a proposed system, the Web documents are represented in concept vector model using WordNet. Personalization is used in a proposed system by building user model (UM). Text summarization in a proposed system is based on extracting the most relevant sentences from the original document to form a summary using WordNet.The examination of the proposed system is performed by using three experiments that are based on relevance based evaluation. The results of the experiment shows that the proposed system, which is based on Semantic Web technology, can improve the accuracy and effectiveness for retrieving relevant Web documents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.