High-Performance Computing (HPC) platforms are growing in size and complexity. In order to improve the quality of service of such platforms, researchers are devoting a great amount of effort to devise algorithms and techniques to improve different aspects of performance such as energy consumption, total usage of the platform, and fairness between users. In spite of this, system administrators are always reluctant to deploy state of the art scheduling methods and most of them revert to EASY-backfilling, also known as EASY-FCFS (EASY-First-Come-First-Served). Newer methods frequently are complex and obscure and the simplicity and transparency of EASY are too important to sacrifice. In this work, we used execution logs from five HPC platforms to compare four simple scheduling policies: FCFS, Shortest estimated Processing time First (SPF), Smallest Requested Resources First (SQF), and Smallest estimated Area First (SAF). Using simulations, we performed a thorough analysis of the cumulative results for up to 180 weeks and considered three scheduling objectives: waiting time, slowdown and per-processor slowdown. We also evaluated other effects, such as the relationship between job size and slowdown, the distribution of slowdown values, and the number of backfilled jobs, for each HPC platform and scheduling policy. We conclude that one can only gain by replacing EASYbackfilling with SAF with backfilling, as it offers improvements in performance by up to 80% in the slowdown metric while maintaining the simplicity and the transparency of FCFS. Moreover, SAF reduces the number of jobs with large slowdowns and the inclusion of a simple thresholding mechanism guarantees that no starvation occurs. Finally, we propose SAF as a new benchmark for future scheduling studies.
Despite the impressive growth and size of super-computers, the computational power they provide still cannot match the demand. Efficient and fair resource allocation is a critical task. Super-computers use Resource and Job Management Systems to schedule applications, which is generally done by relying on generic index policies such as First Come First Served and Shortest Processing time First in combination with Backfilling strategies. Unfortunately, such generic policies often fail to exploit specific characteristics of real workloads. In this work, we focus on improving the performance of online schedulers. We study mixed policies, which are created by combining multiple job characteristics in a weighted linear expression, as opposed to classical pure policies which use only a single characteristic. This larger class of scheduling policies aims at providing more flexibility and adaptability. We use space coverage and black-box optimization techniques to explore this new space of mixed policies and we study how can they adapt to the changes in the workload. We perform an extensive experimental campaign through which we show that (1) even the best pure policy is far from optimal and that (2) using a carefully tuned mixed policy would allow to significantly improve the performance of the system. (3) We also provide empirical evidence that there is no one size fits all policy, by showing that the rapid workload evolution seems to prevent classical online learning algorithms from being effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.