Abstract. This paper investigates the torsional load capacity of three sizes of V-section band clamps when assembled onto rigid flanges by comparing experimental data with a developed theoretical model. This mode of failure is of particular interest for turbocharger applications where, in use, they are subjected to torsional loading via thermal and vibrational effects. The theoretical model developed allows the impact on torsional load capacity of a number of joint parameters to be investigated and good correlation of the results, incorporating variations in coefficients of friction and dimensions, has been shown for the two larger band sizes. For smaller diameter bands, the experimental data suggests that as the band is tightened, contact with the flange is localised rather than being over the full circumference of the band. The coefficients of friction, in particular that between the flanges, and the position of the contact point between band and flange have been shown to have a significant impact on the theoretical torsional load capacity of V-section band clamps.
In this paper a finite element technique to predict the torsional load capacity of V-band clamp joints is presented. The development of this complex, multi-step analysis is explained and the results compared with alternate theories which ignore or take account of transverse friction in the band to flange contact region. It is shown that accounting for transverse friction yields a better comparison with the finite element results for lower coefficients of friction whilst ignoring this component gives better results for higher coefficients of friction. Torsional load capacity is shown to increase with band diameter and T-bolt tension but to be less dependent on the coefficient of friction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.