Edge caching is a promising approach to alleviate the burden on the backhaul of network links. It has a significant role in the Internet of Vehicle (IoV) networks performance by providing cached data at the edge and reduce the burden of the core network caused by the number of participating vehicles and data volume. However, due to the limited computing and storage capabilities of edge devices, it is hard to guarantee that all contents are cached and every requirement of the device are satisfied for all users. In this paper, we design an Information-Centric Network (ICN) with mobility-aware proactive caching scheme to provide delay-sensitive services on IoV networks. The real-time status and interaction of vehicles with other vehicles and Roadside Units (RSU) is modeled using a Markov process. Mobility aware proactive edge caching decision that maximize network performance while minimizing transmission delay is applied. Our numerical simulation results show that the proposed scheme outperforms related caching schemes in terms of latency by 20–25% in terms of latency and by 15–23% in cache hits.
Recently the Internet of Vehicles (IoV) has become a promising research area in the field of the Internet of Things (IoT), which enables vehicles to communicate and exchange real-time information with each other, as well as with infrastructure, people, and other sensors and actuators through various communication interfaces. The realization of IoV networks faces various communication and networking challenges to meet stringent requirements of low latency, dynamic topology, high data-rate connectivity, resource allocation, multiple access, and QoS. Advances in information-centric networks (ICN), edge computing (EC), and artificial intelligence (AI) will transform and help to realize the Intelligent Internet of Vehicles (IIoV). Information-centric networks have emerged as a paradigm promising to cope with the limitations of the current host-based network architecture (TCP/IP-based networks) by providing mobility support, efficient content distribution, scalability and security based on content names, regardless of their location. Edge computing (EC), on the other hand, is a key paradigm to provide computation, storage and other cloud services in close proximity to where they are requested, thus enabling the support of real-time services. It is promising for computation-intensive applications, such as autonomous and cooperative driving, and to alleviate storage burdens (by caching). AI has recently emerged as a powerful tool to break through obstacles in various research areas including that of intelligent transport systems (ITS). ITS are smart enough to make decisions based on the status of a great variety of inputs. The convergence of ICN and EC with AI empowerment will bring new opportunities while also raising not-yet-explored obstacles to realize Intelligent IoV. In this paper, we discuss the applicability of AI techniques in solving challenging vehicular problems and enhancing the learning capacity of edge devices and ICN networks. A comprehensive review is provided of utilizing intelligence in EC and ICN to address current challenges in their application to IIoV. In particular, we focus on intelligent edge computing and networking, offloading, intelligent mobility-aware caching and forwarding and overall network performance. Furthermore, we discuss potential solutions to the presented issues. Finally, we highlight potential research directions which may illuminate efforts to develop new intelligent IoV applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.