The major concern for the governments and private network communication is the security of systems against eavesdropping and illegal access. To overcome such illegal access the security of modern computer systems uses public-ciphers key namely Rivest, Shamir and Adleman (RSA). The RSA provides both authentication and secrecy of communication. In conventional encryption method the cryptography using RSA provides good secrecy and reduces area but generates more delay due to time taken by the multiplication part. To overcome such a problem, a 32-bit RSA using modulo (2 n +1) multiplication based VLSI architecture is presented in this study. This method offers less delay with high performance which can be used in any communication network field. The proposed method is implemented using Xilinx 12.4 ISE and simulated in MODELSIM 6.3c.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.