While exam-style questions are a fundamental educational tool serving a variety of purposes, manual construction of questions is a complex process that requires training, experience, and resources. This, in turn, hinders and slows down the use of educational activities (e.g. providing practice questions) and new advances (e.g. adaptive testing) that require a large pool of questions. To reduce the expenses associated with manual construction of questions and to satisfy the need for a continuous supply of new questions, automatic question generation (AQG) techniques were introduced. This review extends a previous review on AQG literature that has been published up to late 2014. It includes 93 papers that were between 2015 and early 2019 and tackle the automatic generation of questions for educational purposes. The aims of this review are to: provide an overview of the AQG community and its activities, summarise the current trends and advances in AQG, highlight the changes that the area has undergone in the recent years, and suggest areas for improvement and future opportunities for AQG. Similar to what was found previously, there is little focus in the current literature on generating questions of controlled difficulty, enriching question forms and structures, automating template construction, improving presentation, and generating feedback. Our findings also suggest the need to further improve experimental reporting, harmonise evaluation metrics, and investigate other evaluation methods that are more feasible.
Intrusion detection systems that have emerged in recent decades can identify a variety of malicious attacks that target networks by employing several detection approaches. However, the current approaches have challenges in detecting intrusions, which may affect the performance of the overall detection system as well as network performance. For the time being, one of the most important creative technological advancements that plays a significant role in the professional world today is blockchain technology. Blockchain technology moves in the direction of persistent revolution and change. It is a chain of blocks that covers information and maintains trust between individuals no matter how far apart they are. Recently, blockchain was integrated into intrusion detection systems to enhance their overall performance. Blockchain has also been adopted in healthcare, supply chain management, and the Internet of Things. Blockchain uses robust cryptography with private and public keys, and it has numerous properties that have leveraged security's performance over peer-to-peer networks without the need for a third party. To explore and highlight the importance of integrating blockchain with intrusion detection systems, this paper provides a comprehensive background of intrusion detection systems and blockchain technology. Furthermore, a comprehensive review of emerging intrusion detection systems based on blockchain technology is presented. Finally, this paper suggests important future research directions and trending topics in intrusion detection systems based on blockchain technology.
The novel coronavirus disease 2019 (COVID-19) is a pandemic disease that is currently affecting over 200 countries around the world and impacting billions of people. The first step to mitigate and control its spread is to identify and isolate the infected people. But, because of the lack of reverse transcription polymerase chain reaction (RT-CPR) tests, it is important to discover suspected COV-ID-19 cases as early as possible, such as by scan analysis and chest X-ray by radiologists. However, chest X-ray analysis is relatively time-consuming since it requires more than 15 minutes per case. In this paper, an automated novel detection model of COVID-19 cases is proposed to perform real-time detection of COVID-19 cases. The proposed model consists of three main stages: image segmentation using Harris Hawks optimizer, synthetic image augmentation using an enhanced Wasserstein And Auxiliary Classifier Generative Adversarial Network, and image classification using Conventional Neural Network. Raw chest X-ray images datasets are used to train and test the proposed model. Experiments demonstrate that the proposed model is very efficient in the automatic detection of COVID-19 positive cases. It achieved 99.4% accuracy, 99.15% precision, 99.35% recall, 99.25% F-measure, and 98.5% specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.