The coactivator-associated arginine methyltransferase CARM1 is recruited by many different transcription factors as a positive regulator. To understand the mechanism by which CARM1 functions, we sought to isolate its substrates. We developed a small-pool screening approach for this purpose and identified CA150, SAP49, SmB, and U1C as splicing factors that are specifically methylated by CARM1. We further showed that CA150, a molecule that links transcription to splicing, interacts with the Tudor domain of the spinal muscular atrophy protein SMN in a CARM1-dependent fashion. Experiments with an exogenous splicing reporter and the endogenous CD44 gene revealed that CARM1 promotes exon skipping in an enzyme-dependent manner. The identification of splicing factors that are methylated by CARM1, and protein-protein interactions that are regulated by CARM1, strongly implicates this enzyme in the regulation of alternative splicing and points toward its involvement in spinal muscular atrophy pathogenesis.
Transcription of yeast class III genes requires the sequential assembly of the general transcription factors TFIIIC and TFIIIB, and of RNA polymerase III, into an initiation complex composed of at least 25 polypeptides. The 70-kDa subunit of TFIIIB (TFIIIB70) is central in this network of interactions as it contacts both TATA-binding protein and a subunit of polymerase III. We show here that the TATA-binding protein interacts with the carboxyl-terminal part of TFIIIB70. TFIIIB70 also contacts TFIIIC (factor tau) via its tau 131 subunit. The protein domains of tau 131 and TFIIIB70 involved in this interaction, either positively or negatively, were mapped using the two-hybrid system. We provide evidence that intramolecular interactions mask functional domains in both polypeptides.
The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an overall compact architecture in which the “split-SET” domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 α-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.