This paper addresses the problem of identifying sparse linear time-invariant (LTI) systems from a single sample trajectory generated by the system dynamics. We introduce a Lasso-like estimator for the parameters of the system, taking into account their sparse nature. Assuming that the system is stable, or that it is equipped with an initial stabilizing controller, we provide sharp finite-time guarantees on the accurate recovery of both the sparsity structure and the parameter values of the system. In particular, we show that the proposed estimator can correctly identify the sparsity pattern of the system matrices with high probability, provided that the length of the sample trajectory exceeds a threshold. Furthermore, we show that this threshold scales polynomially in the number of nonzero elements in the system matrices, but logarithmically in the system dimensions -this improves on existing sample complexity bounds for the sparse system identification problem. We further extend these results to obtain sharp bounds on the ℓ ∞ -norm of the estimation error and show how different properties of the system-such as its stability level and mutual incoherency-affect this bound. Finally, an extensive case study on power systems is presented to illustrate the performance of the proposed estimation method.
This paper studies the optimal transmission switching (OTS) problem for power systems, where certain lines are fixed (uncontrollable) and the remaining ones are controllable via on/off switches. The goal is to identify a topology of the power grid that minimizes the cost of the system operation while satisfying the physical and operational constraints. Most of the existing methods for the problem are based on first converting the OTS into a mixed-integer linear program (MILP) or mixed-integer quadratic program (MIQP), and then iteratively solving a series of its convex relaxations. The performance of these methods depends heavily on the strength of the MILP or MIQP formulations. In this paper, it is shown that finding the strongest variable upper and lower bounds to be used in an MILP or MIQP formulation of the OTS based on the big-M or McCormick inequalities is NP-hard. Furthermore, it is proven that unless P = N P , there is no constant-factor approximation algorithm for constructing these variable bounds. Despite the inherent difficulty of obtaining the strongest bounds in general, a simple bound strengthening method is presented to strengthen the convex relaxation of the problem when there exists a connected spanning subnetwork of the system with fixed lines. The proposed method can be treated as a preprocessing step that is independent of the solver to be later used for numerical calculations and can be carried out offline before initiating the solver. A remarkable speedup in the runtime of the mixed-integer solvers is obtained using the proposed bound strengthening method for mediumand large-scale real world systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.