Traumatic brain injury (TBI) as a consequence of exposure to blast is increasingly prevalent in military populations, with the underlying pathophysiological mechanisms mostly unknown. In the present study, we utilized an air-driven shock tube to investigate the effects of blast exposure (120 kPa) on rat brains. Immediately following exposure to blast neurological function was reduced. BBB permeability was measured using IgG antibody and evaluating its immunoreactivity in the brain. At 3 and 24 h post-exposure there was a transient significant increase in IgG staining in the cortex. At 3 days post-exposure IgG immunoreactivity returned to control levels. Quantitative immunostaining was employed to determine the temporal course of brain oxidative stress following exposure to blast. Levels of 4-hydroxynonenal (4HNE) and 3-nitrotyrosine (3NT) were significantly increased at 3 h post-exposure and returned to control levels at 24 h post-exposure. The response of microglia to blast exposure was determined by autoradiographic localization of 3 H-PK11195 binding. At 5 days post-exposure increased binding was observed in the contralateral and ipsilateral dentate gyrus. These regions also displayed increased binding at 10 days post-exposure; in addition to these regions there was increased binding in the contralateral ventral hippocampus and substantia nigra at this time point. Using antibodies against CD11b/c, microglia morphology characteristic of activated microglia was observed in the hippocampus and substantia nigra of animals exposed to blast. These results indicate that BBB breakdown, oxidative stress, and microglia activation likely play a role in the neuropathology associated with TBI as a result of blast exposure.
Lung contusion is a common problem from blunt chest trauma caused by mechanical forces and by exposure to blast overpressure, often with fatal consequences. Lung contusion is also a risk factor for the development of pneumonia, severe clinical acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Infiltrating neutrophils are considered to be central mediators of lung injuries after blunt trauma. Recent studies have demonstrated that antioxidants reduced pulmonary inflammation in different models of lung damage. This study examined the effect of antioxidant N-acetylcysteine amide (NACA) on the progression of lung inflammation after exposure to a moderate level of blast overpressure (140 kPa). Rats were administered with NACA (i.p. 100 mg/kg) or placebo (PBS) 30, 60 min and 24 h after exposure. Nonblasted sham-injected animals served as controls. Neutrophil infiltration measured by myeloperoxidase (MPO) activity in the lung was significantly increased at 2 days after blast and returned to controls at 8 days. This increase corresponded with activation of integrin CD11b mRNA and lung inflammatory chemokine mRNA expression; macrophage inflammatory protein-1 (MIP-1), monocyte chemotactic peptide-1 (MCP-1), and cytokine-induced neutrophil chemoattractant-1 (CINC-1). At 8 days, all inflammatory mediators returned to control levels. In addition, expression of heme oxygenase-1 (HO-1) mRNA increased at 2 days after exposure. No changes were detected in the lung manganase superoxide dismutase (MnSOD) or glutathione reductase (GR) mRNA expression after blast. N-Acetylcysteine amide significantly reduced infiltration of neutrophils and CD11b mRNA activation in lungs, and completely blocked activation of MIP-1, MCP-1 and CINC-1 mRNA. The relatively higher inhibition of chemokine mRNAs compared with reduction in MPO activity and CD11b is in accordance with an antioxidant effect of NACA on reactive oxygen species (ROS) accumulation, rather than by an effect on neutrophil sequestration. The inhibition of HO-1 mRNA activation after blast was likely also related to the drug antioxidant effect.
A high incidence of blast exposure is a 21st century reality in counter-insurgency warfare. However, thresholds for closed-head blast-induced traumatic brain injury (bTBI) remain unknown. Moreover, without objective information about relative blast exposure, warfighters with bTBI may not receive appropriate medical care and may remain in harm's way. Accordingly, we have engineered a blast injury dosimeter (BID) using a photonic crystalline material that changes color following blast exposure. The photonic crystals are fabricated using SU-8 via multi-beam interference laser lithography. The final BID is similar in appearance to an array of small colored stickers that may be affixed to uniforms or helmets in multiple locations. Although durable under normal conditions, the photonic crystalline micro- and nano-structure are precisely altered by blast to create a color change. These BIDs were evaluated using a rat model of bTBI, for which blast shockwave exposure was generated via a compressed air-driven shock tube. With prototype BID arrays affixed to the animals, we found that BID color changes corresponded with subtle brain pathologies, including neuronal degeneration and reactive astrocytosis. These subtle changes were most notable in the dentate gyrus of the hippocampus, cerebral cortex, and cerebellum. These data demonstrate the feasibility of using a materials-based, power-free colorimetric BID as the first self-contained blast sensor calibrated to correspond with brain pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.