Highlights d Atrazine exposure leads to changes in host microbiota that are vertically transmitted d Atrazine is toxic to the hymenopteran model Nasonia at very high doses d Specific gut bacteria metabolize atrazine and are enriched after atrazine exposure d Multi-generational exposure causes host genome divergence
A series of 18 bis- and tris-pyridinium amphiphiles were prepared and tested for both antimicrobial activity and lytic capability, in comparison with the commercially available pyridinium antiseptic cetylpyridinium chloride (CPC). Assessments were made against Gram-positive and Gram-negative bacteria, including two methicillin-resistant Staphylococcus aureus (MRSA) strains. While 2Pyr-11,11 was identified as one of the most potent antimicrobial quaternary ammonium compounds (QACs) reported to date, boasting nanomolar inhibition against five of six bacteria tested, no significant improvement in bioactivity of tris-pyridinium amphiphiles over their bis-pyridinium counterparts was observed. However, the multicationic QACs (multiQACs) presented herein did display significant advantages over the monocationic CPC; while similar red blood cell lysis was observed, superior activity against both Gram-negative bacteria and resistant S. aureus strains led to the discovery of four pyridinium-based multiQACs with advantageous therapeutic indices.
Quaternary ammonium compounds (QACs) are ubiquitous antiseptics whose chemical stability is both an aid to prolonged antibacterial activity and a liability to the environment. Soft antimicrobials, such as QACs designed to decompose in relatively short times, show the promise to kill bacteria effectively but not leave a lasting footprint. We have designed and prepared 40 soft QAC compounds based on both ester and amide linkages, in a systematic study of mono-, bis-, and tris-cationic QAC species. Antimicrobial activity, red blood cell lysis, and chemical stability were assessed. Antiseptic activity was strong against a panel of six bacteria including two MRSA strains, with low micromolar activity seen in many compounds; amide analogs showed superior activity over ester analogs, with one bisQAC displaying average MIC activity of ∼1μM. For a small subset of highly bioactive compounds, hydrolysis rates in pure water as well as buffers of pH =4, 7, and 10 were tracked by LCMS, and indicated good stability for amides while rapid hydrolysis was observed for all compounds in acidic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.