The interest in using natural fiber reinforced composites is now at its highest. Numerous studies have been conducted due to their positive benefits related to environmental issues. Even though they have limitations for some load requirements, this drawback has been countered through fiber treatment and hybridization. Sandwich structure, on the other hand, is a combination of two or more individual components with different properties, which when joined together can result in better performance. Sandwich structures have been used in a wide range of industrial material applications. They are known to be lightweight and good at absorbing energy, providing superior strength and stiffness-to-weight ratios, and offering opportunities, through design integration, to remove some components from the core element. Today, many industries use composite sandwich structures in a range of components. Through good design of the core structure, one can maximize the strength properties, with a low density. However, the application of natural fiber composites in sandwich structures is still minimal. Therefore, this paper reviewed the possibility of using a natural fiber composite in sandwich structure applications. It addressed the mechanical properties and energy-absorbing characteristics of natural fiber-based sandwich structures tested under various compression loads. The results and potential areas of improvement to fit into a wide range of engineering applications were discussed.
In this work, the combined effect of moisture and temperature on the bending behavior of simply supported orthotropic cylindrical shells has been investigated. Initially three dimensional equilibrium equations of thermoelasticity, simplified to the case of generalized plane strain deformations in the axial direction are solved analytically for an orthotropic cylindrical shell strip under thermal loading. Based on the realistic variation of displacements from the elasticity approach, a new higher order shear deformation theory was proposed for the analysis of an orthotropic cylindrical shell strip under hygrothermal and mechanical loading. The zigzag form of the displacement is incorporated via the Murakami zigzag function. Results are presented for mechanical and thermal loading for various layups and they are validated against the derived elasticity solution. The significance of retaining various higher-order terms in the present model, in evaluating the stresses and deflection for composite laminates is brought out clearly through parametric study. Useful results for combined hygrothermal loading are presented in tabular and graphical form. It is expected that the numerical results presented herein will serve as bench mark in future.
The combined effect of moisture and temperature on the bending behaviour of simply supported cross ply composite laminated shells has been investigated. A 13 term accurate higher order shear deformation theory with zigzag function is used in this analysis in which the effects of transverse shear deformation are taken into account. The results are presented for thermal load cases are validated against available 3D elasticity solutions in the literature and useful results for combined hygrothermal loading are presented in tabular and graphical form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.