B rain arteriovenous malformations (AVMs) are a major cause of stroke in children and young adults. Surgical excision of an AVM offers immediate protection from hemorrhage and is suitable for small and superficial lesions. Approximately 70% of small AVMs (< 3 cm in diameter) are completely obliterated by 2-3 years after Gamma Knife surgery (GKS).1,3,23 However, patients treated with GKS remain at risk for suffering hemorrhage during the latent period before AVM occlusion. 9,15 A large number of patients who have large and/or deeply located AVMs cannot be treated using current methods.9 An improved method of treating AVMs is required for these patients.One potential new treatment is to induce thrombosis in abbreviatioNs AVM = arteriovenous malformation; GKS = Gamma Knife surgery; LCCA = left common carotid artery; LEJV = left external jugular vein; LINAC = linear accelerator. obJect Brain arteriovenous malformations (AVMs) are a major cause of stroke. Many AVMs are effectively obliterated by stereotactic radiosurgery, but such treatment for lesions larger than 3 cm is not as effective. Understanding the responses to radiosurgery may lead to new biological enhancements to this treatment modality. The aim of the present study was to investigate the hemodynamic, morphological, and histological effects of Gamma Knife surgery (GKS) in an animal model of brain AVM. methods An arteriovenous fistula was created by anastomosing the left external jugular vein to the side of the common carotid artery in 64 male Sprague-Dawley rats (weight 345 ± 8.8 g). Six weeks after AVM creation, 32 rats were treated with a single dose of GKS (20 Gy); 32 animals received sham radiation. Eight irradiated and 8 control animals were studied at each specified time point (1, 3, 6, and 12 weeks) for hemodynamic, morphological, and histological characterization. results Two AVMs showed partial angiographic obliteration at 6 weeks. Angiography revealed complete obliteration in 3 irradiated rats at 12 weeks. Blood flow in the ipsilateral proximal carotid artery (p < 0.001) and arterialized jugular vein (p < 0.05) was significantly lower in the irradiated group than in the control group. The arterialized vein's external diameter was significantly smaller in GKS-treated animals at 6 (p < 0.05) and 12 (p < 0.001) weeks. Histological changes included subendothelial cellular proliferation and luminal narrowing in GKS-treated animals. Neither luminal obliteration nor thrombus formation was identified at any of the time points in either irradiated or nonirradiated animals. coNclusioNs GKS produced morphological, angiographic, and histological changes in the model of AVM as early as 6 weeks after treatment. These results support the use of this model for studying methods to enhance radiation response in AVMs.
Phosphatidylserine (PS) is asymmetrically distributed across the plasma membrane, located predominantly on the inner leaflet in healthy cells. Translocation of PS to the outer leaflet makes it available as a target for biological therapies. We examined PS translocation after radiosurgery in an animal model of brain arteriovenous malformation (AVM). An arteriovenous fistula was created by end-to-side anastomosis of the left external jugular vein to the common carotid artery in 6-week-old, male Sprague Dawley rats. Six weeks after AVM creation, 15 rats underwent Gamma Knife stereotactic radiosurgery receiving a single 15 Gy dose to the margin of the fistula; 15 rats received sham treatment. Externalization of PS was examined by intravenous injection of a PS-specific near-infrared probe, PSVue-794, and in vivo fluorescence optical imaging at 1, 7, 21, 42, 63 and 84 days postirradiation. Fluorescent signaling indicative of PS translocation to the luminal cell surface accumulated in the AVM region, in both irradiated and nonirradiated animals, at all time points. Fluorescence was localized specifically to the AVM region and was not present in any other anatomical sites. Translocated PS increased over time in irradiated rats (P < 0.001) but not in sham-irradiated rats and this difference reached statistical significance at day 84 (P < 0.05). In summary, vessels within the mature rat AVM demonstrate elevated PS externalization compared to normal vessels. A single dose of ionizing radiation can increase PS externalization in a time-dependent manner. Strict localization of PS externalization within the AVM region suggests that stereotactic radiosurgery can serve as an effective priming agent and PS may be a suitable candidate for vascular-targeting approaches to AVM treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.