When making the decision about whether or not to breed a given cow, knowledge about the expected outcome would have an economic impact on profitability of the breeding program and net income of the farm. The outcome of each breeding can be affected by many management and physiological features that vary between farms and interact with each other. Hence, the ability of machine learning algorithms to accommodate complex relationships in the data and missing values for explanatory variables makes these algorithms well suited for investigation of reproduction performance in dairy cattle. The objective of this study was to develop a user-friendly and intuitive on-farm tool to help farmers make reproduction management decisions. Several different machine learning algorithms were applied to predict the insemination outcomes of individual cows based on phenotypic and genotypic data. Data from 26 dairy farms in the Alta Genetics (Watertown, WI) Advantage Progeny Testing Program were used, representing a 10-yr period from 2000 to 2010. Health, reproduction, and production data were extracted from on-farm dairy management software, and estimated breeding values were downloaded from the US Department of Agriculture Agricultural Research Service Animal Improvement Programs Laboratory (Beltsville, MD) database. The edited data set consisted of 129,245 breeding records from primiparous Holstein cows and 195,128 breeding records from multiparous Holstein cows. Each data point in the final data set included 23 and 25 explanatory variables and 1 binary outcome for of 0.756 ± 0.005 and 0.736 ± 0.005 for primiparous and multiparous cows, respectively. The naïve Bayes algorithm, Bayesian network, and decision tree algorithms showed somewhat poorer classification performance. An information-based variable selection procedure identified herd average conception rate, incidence of ketosis, number of previous (failed) inseminations, days in milk at breeding, and mastitis as the most effective explanatory variables in predicting pregnancy outcome.
1. Deep learning (DL) algorithms are the state of the art in automated classification of wildlife camera trap images. The challenge is that the ecologist cannot know in advance how many images per species they need to collect for model training in order to achieve their desired classification accuracy. In fact there is limited empirical evidence in the context of camera trapping to demonstrate that increasing sample size will lead to improved accuracy. 2. In this study we explore in depth the issues of deep learning model performance for progressively increasing per class (species) sample sizes. We also provide ecologists with an approximation formula to estimate how many images per animal species they need for certain accuracy level a priori. This will help ecologists for optimal allocation of resources, work and efficient study design. 3. In order to investigate the effect of number of training images; seven training sets with 10, 20, 50, 150, 500, 1000 images per class were designed. Six deep learning architectures namely ResNet-18, ResNet-50, ResNet-152, DnsNet-121, DnsNet-161, and DnsNet-201 were trained and tested on a common exclusive testing set of 250 images per class. The whole experiment was repeated on three similar datasets from Australia, Africa and North America and the results were compared. Simple regression equations for use by practitioners to approximate model performance metrics are provided. Generalizes additive models (GAM) are shown to be effective in modelling DL performance metrics based on the number of training images per class, tuning scheme and dataset. 4. Overall, our trained models classified images with 0.94 accuracy (ACC), 0.73 precision (PRC), 0.72 true positive rate (TPR), and 0.03 false positive rate (FPR). Variation in model performance metrics among datasets, species and deep learning architectures exist and are shown distinctively in the discussion section. The ordinary least squares regression models explained 57%, 54%, 52%, and 34% of expected variation of ACC, PRC, TPR, and FPR according to number of images available for training. Generalized additive models explained 77%, 69%, 70%, and 53% of deviance for ACC, PRC, TPR, and FPR respectively. 5. Predictive models were developed linking number of training images per class, model, dataset and performance metrics. The ordinary least squares regression and Generalised additive models developed provides a practical toolbox to estimate model performance with respect to different numbers of training images.
Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.