In this study, the use of Autoclaved Aerated Concrete (AAC) as an in fill material for semi precast panel is investigated experimentally. The effectiveness of proposed light weight slab is reached by comparing the behavior of specimens with that of conventional solid precast slab. The comparisons were based on structural performance and total weight reduction. The composite AAC slabs section chosen are one way slabs with a size of 1m × 3m × 0.130 m (Width × Length × Depth). The specimens vary in the AAC blocks layouts and total weight reduction ratio. The test results showed that the AAC composite precast panel provides reasonable weight reduction without sacrificing the structural capacity.
The seismic behavior of full-scale exterior reinforced concrete (RC) beam-column joints retrofitted with externally bonded Carbon Fiber Polymers (CFRP) is examined in this paper. Casting and testing of two similar reinforced concrete beam column connections in the absence of transverse reinforcement at the joints took place under opposing cyclic loading with regulated displacement so as to examine their fundamental seismic performance. The first joint was examined as the control specimen and the other specimen was then retrofitted with CFRP sheets, with rounded border of the column and beam at and close to the joint region to change them from square to squircle segments. It is demonstrated in the experimental findings that the retrofitted beam column joint shows significantly greater strength, energy dissipation and ductility in comparison to the control specimen. There was a shift in the failure from the joint region to the beam ends in the retrofitted specimens, which would help in preventing the structure from disintegrating progressively. Because of the change in the beam and column from square to squircle segments, the debonding potential of the CFRP decreased and the restrictive impact of the CFRP increased. As a result, the experimental findings were verified using a 3D nonlinear finite element (FE) model. When the finite element and experimental findings are compared, it is determined that the suggested model is quite accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.