Polymer-coated silica nanoparticles (PSiNPs) have been experimentally investigated in core- and micro-scale studies for enhanced oil recovery (EOR). Wettability and flow rate have a considerable effect on oil displacement in porous media. This work investigates the efficiency of PSiNPs for oil recovery on micro-scale at three wettability states (water-wet, intermediate-wet, and oil-wet). In addition, a cluster mobilization regime is considered in all experiments. A microfluidic approach was utilized to perform flooding experiments with constant experimental settings such as flowrate, pore-structure, initial oil topology, porosity, and permeability. In this study, the wettability of the microfluidic chips was altered to have three states of wettability. Firstly, a micro-scale study (brine-oil-glass system) of each wettability condition effect on flow behavior was conducted via monitoring dynamic changes in the oleic phase. Secondly, the obtained results were used as a basis to understand the changes induced by the PSiNPs while flooding at the same conditions. The experimental data were extracted by means of image processing and analysis at a high spatial and temporal resolution. Low injection rate experiments (corresponding to ~1.26 m/day in reservoir) in a brine-oil-glass system showed that the waterflood invaded with a more stable front with a slower displacement velocity in the water-wet state compared to the other states, which had water channeling through the big pores. As a result, a faster stop of the dynamic changes for the intermediate- and oil-wet state was observed, leading to lower oil recoveries compared to the water-wet state. In a cluster mobilization regime, dynamic changes were noticeable only for the oil-wet condition. For the aforementioned different conditions, PSiNPs improved oil displacement efficiency. The usage of PSiNPs showed a better clusterization efficiency, leading to a higher mobilization, smaller remaining oil clusters, and lower connectivity of the residual oil. The knowledge from this experimental work adds to the understanding of the behavior of polymer-coated silica nanoparticles as a recovery agent at different wettability states and a cluster mobilization regime.
Recently, the combination of conventional chemical methods for enhanced oil recovery (EOR) and nanotechnology has received lots of attention. This experimental study explores the dynamic changes in the oil configuration due to the addition of nanoparticles (NPs) to biopolymer flooding. The tests were performed in water-wet micromodels using Xanthan Gum and Scleroglucan, and silica-based NPs in a secondary mode. The microfluidic setup was integrated with a microscope to capture the micro-scale fluid configurations. The change in saturation, connectivity, and cluster size distributions of the non-wetting phase was evaluated by means of image analysis. The biopolymer content did not affect the ability of the NPs to reduce the interfacial tension. The experiments showed that the reference nanofluid (NF) flood led to the highest ultimate oil recovery, compared to the Xanthan Gum, Scleroglucan and brine flooding at the same capillary number. In the cases of adding NPs to the biopolymer solutions, NPs-assisted Xanthan flooding achieved the highest ultimate oil recovery. This behavior was also evident at a higher capillary number. The overall finding suggests a more homogenous dispersion of the NPs in the solution and a reduction in the polymer adsorption in the Xanthan Gum/NPs solution, which explains the improvement in the sweep efficiency and recovery factor.
Polymer-coated silica nanoparticles (PSiNP) have been proposed for enhanced oil recovery (EOR) owing to their improved properties such as stability, emulsion formation, low retention, etc. over bare nanoparticles. Even though most studies report EOR potential of nanoparticles compared to plain water flood, the underlying oil recovery mechanisms of nanoparticles are not well understood. This experimental work investigates the efficiency of PSiNP for oil recovery on micro-scale via comparing waterflooding to nanofluid flooding with minimizing the variations in pore architecture and initial oil connectivity on the trapping efficiency. This research unleashes the potential application of four types of PSiNPs for EOR in water-wet Berea sandstone reservoirs and microfluidic chips. The PSiNPs were mixed with synthetic seawater at 0.1 wt % concentration. The oil recoveries were compared with waterflooding obtained on the same core. For this purpose, the following experiments were performed: First, four waterfloods were carried out until there was no oil production on four cores. Then, the cores were cleaned and dried. Afterwards, each core was injected with nanofluid in secondary recovery mode. To compare the four types of PSiNPs, microfluidic experiments were performed under the same experimental conditions such as pore-structure and initial oil connectivity. Measurements of interfacial tension and contact angle, and analysis of differential pressure across the cores and pore-scale images were performed to reveal possible recovery mechanisms of PSiNPs. The nanofluids had higher ultimate oil recoveries than plain waterflood. The PSiNPs with small particle sizes had the highest reduction in IFT and the best capability to disconnect and minimize the size of the residual oil clusters within the pore spaces. Our hypothesis is that the adsorption of PSiNPs on the grain surfaces played a considerable role in the oil displacement efficiency. On the other hand, the ability of PSiNPs to cause pore-blockage and log-jamming attributed to the large NP size and adsorption on surfaces was strongly related to the displacement efficiency. Performing screening experiments of different nanofluids on cores with similar petrophysical properties could produce misleading results. Microfluidic experiments have advantages over the core-flooding experiments. Since the microchip has different properties compared to natural rocks; the results did not correlate with core-scale experiments. However, it was a significant tool, in this work, to indicate the generation of emulsions and the rate of clusterization, which cannot be seen from conventional core-scale experiments. The knowledge gained from this experimental work helps to improve the screening methodology for the use of recovery agents such as nanoparticles for EOR applications.
Summary Waterflooding has been applied either along with primary production to maintain reservoir pressure or later to displace the oil in conventional and heavy-oil reservoirs. Although it is generally accepted that waterflooding of light oil reservoirs in oil-wet systems delivers the least oil compared to either water-wet or intermediate-wet systems, there is a lack of systematic research to study waterflooding of heavy oils in oil-wet reservoirs. This research gives some new insights on the effect of injection velocity and oil viscosity on waterflooding of oil-wetreservoirs. Seven different oils with a broad range of viscosity ranging from 1 to 15 000 mPa·s at 25°C were used in 18 coreflooding experiments in which injection velocity was varied from 0.7 to 24.3 ft/D (2.5×10−6 to 86.0×10−6 m/s). Oil-wet sand (with contact angle of 159.3 ± 3.1°) was used in all the flooding experiments. Breakthrough time was precisely determined using an in-line densitometer installed downstream of the core. Oil-wet microfluidics (164.4 ± 9.7°) were used to study drainage displacement at the pore scale. Our observations suggest the crucial role of the wetting phase (oil) viscosity and the injection velocity in providing the driving force (capillary pressure) required to drain oil-wet pores. Capillarity-driven drainage can significantly increase oil recovery compared to injecting water at smaller pressure gradients. Increasing viscosity of the oil being displaced (keeping velocity the same) increases pressure gradient across the core. This increase in pressure gradient can be translated to the increase in the applied capillary pressure, especially where the oil phase is nearly stationary, such as regions of bypassed oil. When the applied capillary pressure exceeds a threshold, drainage displacement of oil by the nonwetting phase is facilitated. The driving force to push nonwetting phase (water) into the oil-wet pores can also be provided through increasing injection velocity (keeping oil viscosity the same). In this paper, it is demonstrated that in an oil-wet system, increasing velocity until applied capillary pressure exceeds a threshold improves forced drainage to the extent that it increases oil recovery even when viscous fingering strongly influences the displacement. This is consistent with the classical literature on carbonates (deZabala and Kamath 1995). However, the current work extends the classical learnings to a much wider operational envelope on oil-wet sandstones. Across this wider range, the threshold at which applied capillary pressure makes a significant contribution to oil recovery exhibits a systematic variation with oil viscosity. However, the applied capillary pressure; that is, the pressure drop observed during an experiment, does not vary systematically with conventional static parameters or groups and thus cannot be accurately estimated a priori. For this reason, the scaling group presented here incorporates a dynamic capillary pressure and correlates residual oil saturation more effectively than previously proposed static scaling groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.