The direct catalytic conversion of methane (CH4) to higher hydrocarbons has attracted considerable attention in recent years because of the increasing supply of natural gas. Efficient and selective catalytic conversion of methane to value-added products, however, remains a major challenge. Recent studies have shown that the incorporation of phosphorus atoms in transition metals improves their selectivity and resistance to coke formation for many catalytic reactions. In this work, we report a density function theory-based investigation of methane activation and C2 product formation on Ni2P(001). Our results indicate that, despite the lower reactivity of Ni2P relative to Ni, the addition of phosphorus atoms hinders excessive dehydrogenation of methane to CH* and C* species, thus reducing carbon deposition on the surface. CH3* and CH2* moieties, instead, are more likely to be the most abundant surface intermediates once the initial C–H bond in methane is activated with a barrier of 246 kJ mol−1. The formation of ethylene from 2CH2* on Ni2P is facile with a barrier of 56 kJ mol−1, which is consistent with prior experimental studies. Collectively, these findings suggest that Ni2P may be an attractive catalyst for selective methane conversion to ethylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.