Ionizing radiation is one of the most common cancer treatments; however, the treatment leads to a wide range of debilitating side effects. In patients with head and neck cancer (HNC), the surrounding normal salivary gland is extremely sensitive to therapeutic radiation, and damage to this tissue results in various oral complications and decreased quality of life (QOL). In the current study, mice treated with targeted head and neck radiation showed a significant increase in double-stranded breaks (DSB) in the DNA of parotid salivary gland cells immediately after treatment, and this remained elevated 3 h posttreatment. In contrast, mice pretreated with insulinlike growth factor-1 (IGF-1) showed resolution of the same amount of initial DNA damage by 3 h posttreatment. At acute time points (30 min to 2 h), irradiated parotid glands had significantly decreased levels of the histone deactylase Sirtuin-1 (SirT-1) which has been previously shown to function in DNA repair. Pretreatment with IGF-1 increased SirT-1 protein levels and increased deacetylation of SirT-1 targets involved in DNA repair. Pharmacological inhibition of SirT-1 activity decreased the IGF-1-mediated resolution of DSB. These data suggest that IGF-1 promotes DNA repair in irradiated parotid glands through the maintenance and activation of SirT-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.