By manipulating resources or dispersal opportunities, mothers can force offspring to remain at the nest to help raise siblings, creating a division of labor. In the subsocial bee , mothers manipulate the quantity and quality of pollen provided to the first female offspring, producing a dwarf eldest daughter that is physically smaller and behaviorally subordinate. This daughter forages for her siblings and forgoes her own reproduction. To understand how the mother's manipulation of pollen affects the physiology and behavior of her offspring, we manipulated the amount of pollen provided to offspring and measured the effects of pollen quantity on offspring development, adult body size and behavior. We found that by experimentally manipulating pollen quantities we could recreate the dwarf eldest daughter phenotype, demonstrating how nutrient deficiency alone can lead to the development of a worker-like daughter. Specifically, by reducing the pollen and nutrition to offspring, we significantly reduced adult body size and lipid stores, creating significantly less aggressive, subordinate individuals. Worker behavior in an otherwise solitary bee begins to explain how maternal manipulation of resources could lead to the development of social organization and reproductive hierarchies, a major step in the transition to highly social behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.