The success of immunization with irradiated sporozoites is unparalleled among the current vaccination approaches against malaria, but its mechanistic underpinnings have yet to be fully elucidated. Using a model mimicking natural infection by Plasmodium yoelii, we delineated early events governing the development of protective CD8(+) T-cell responses to the circumsporozoite protein. We demonstrate that dendritic cells in cutaneous lymph nodes prime the first cohort of CD8(+) T cells after an infectious mosquito bite. Ablation of these lymphoid sites greatly impairs subsequent development of protective immunity. Activated CD8(+) T cells then travel to systemic sites, including the liver, in a sphingosine-1-phosphate (S1P)-dependent fashion. These effector cells, however, no longer require bone marrow-derived antigen-presenting cells for protection; instead, they recognize antigen on parenchymal cells-presumably parasitized hepatocytes. Therefore, we report an unexpected dichotomy in the tissue restriction of host responses during the development and execution of protective immunity to Plasmodium.
Stool is chemically complex and the extraction of DNA from stool samples is extremely difficult. Haemoglobin breakdown products, such as bilirubin, bile acids and mineral ions, that are present in the stool samples, can inhibit DNA amplification and cause molecular assays to produce false-negative results. Therefore, stool storage conditions are highly important for the diagnosis of intestinal parasites and other microorganisms through molecular approaches. In the current study, stool samples that were positive for Giardia intestinalis were collected from five different patients. Each sample was stored using one out of six different storage conditions [room temperature (RT), +4ºC, -20ºC, 70% alcohol, 10% formaldehyde or 2.5% potassium dichromate] for DNA extraction procedures at one, two, three and four weeks. A modified QIAamp Stool Mini Kit procedure was used to isolate the DNA from stored samples. After DNA isolation, polymerase chain reaction (PCR) amplification was performed using primers that target the β-giardin gene. A G. intestinalis-specific 384 bp band was obtained from all of the cyst-containing stool samples that were stored at RT, +4ºC and -20ºC and in 70% alcohol and 2.5% potassium dichromate; however, this band was not produced by samples that had been stored in 10% formaldehyde. Moreover, for the stool samples containing trophozoites, the same G. intestinalis-specific band was only obtained from the samples that were stored in 2.5% potassium dichromate for up to one month. As a result, it appears evident that the most suitable storage condition for stool samples to permit the isolation of G. intestinalis DNA is in 2.5% potassium dichromate; under these conditions, stool samples may be stored for one month.
Thymoquinone (TQ) is the active ingredient extracted from the essential oil of Nigella sativa. A number of studies implicated TQ as an antitumor agent. In this study, cytotoxic effects of the oil of N. sativa and TQ were evaluated on human cervical cancer cell line, HeLa cells. IC50 value was ~0.125 μl/ml for N. sativa oil preparations and 12.5 μM for TQ. TQ strongly inhibited wound healing at all concentrations ranging from 12.5 to 100 μM in a scratch wound healing assay. Additionally, induction of apoptosis by TQ was assessed by Giemsa staining and TQ was found to induce apoptosis in cancer cells especially at concentrations of 50 and 100 μM. TQ-mediated transcriptional regulation of 84 genes involved in apoptosis was studied using a PCR array. At low dose (12.5 μM), TQ was found to induce expression of four pro-apoptotic genes: BIK (~22.7-fold), FASL (~2.9-fold), BCL2L10 (~2.1-fold), and CASP1 (~2-fold). TQ was also found to reduce the expression of an anti-apoptotic gene implicated in NF-kappa-B signaling and cancer: RELA (~8-fold). At high dose (100 μM), TQ mediated the expression of 21 genes implicated directly in apoptosis (6 genes), TNF signaling (10 genes), and NF-kappa-B signaling (3 genes) such as BIK, BID, TNFRSF10A, TNFRSF10B, TNF, TRAF3, RELA, and RELB. In conclusion, this study implicates the role of TQ in the inhibition of cancer cell proliferation and migration. At the same time, our results strongly suggest that TQ intervenes with TNF and NF-kappa-B signaling during TQ-mediated induction of apoptosis in cancer cells.
PurposeTo investigate the seroprevalence of toxocariasis in patients diagnosed as schizophrenia.Patients and MethodsNinety-eight schizophrenic patients hospitalized at The Elazığ Psychiatric Hospital were included in the study. Anti-Toxocara IgG and/or IgM antibodies were determined by using commercial Toxocara canis IgG and/or IgM ELISA kit.ResultsSeropositivity for T. canis was detected in 45 (45.9%) of 98 patients and 2 (2.0%) of 100 control subjects the difference was statistically significant (p < 0.001). The seroprevalence was 40.4% (19 cases) and 51.0% (26 cases) for female and male subjects, respectively (p = 0.3). When the seropositive and seronegative schizophrenic patients were compared with respect to the age group environment they were living in, occupation period of follow up and number of hospitalizations, there were no differences between the two groups (all, p > 0.05).ConclusionIn conclusion, the schizophrenic state seems to present a high risk for Toxocara infection in Turkey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.