In this paper we consider the semilinear wave equation with the multiplication of logarithmic and polynomial nonlinearities. We establish the global existence and finite time blow up of solutions at three different energy levels (\(E(0)\lt d\), \(E(0)=d\) and \(E(0)\gt 0\)) using potential well method. The results in this article shed some light on using potential wells to classify the solutions of the semilinear wave equation with the product of polynomial and logarithmic nonlinearity.
The Cauchy problem of nonlinear Schrödinger equation with a harmonic potential for describing the attractive Bose-Einstein condensate under the magnetic trap is considered. We give some sufficient conditions of global existence and finite time blow up of solutions by introducing a family of potential wells. Some different sharp conditions for global existence, and some invariant sets of solutions are also obtained here.
Global well-posedness and finite time blow up issues for some strongly damped nonlinear wave equation are investigated in the present paper. For subcritical initial energy by employing the concavity method we show a finite time blow up result of the solution. And for critical initial energy we present the global existence, asymptotic behavior and finite time blow up of the solution in the framework of the potential well. Further for supercritical initial energy we give a sufficient condition on the initial data such that the solution blows up in finite time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.