The Event-Related Potential (ERP) is a time-locked measure of electrical activity of the cerebral surface representing a distinct phase of cortical processing. Two components of the ERP which bear special importance to stimulus evaluation, selective attention, and conscious discrimination in humans are the P300 positivity and N200 negativity, appearing 300 ms and 200 ms post-stimulus, respectively. With the rapid proliferation of high-density EEG methods, and interdisciplinary interest in its application as a prognostic, diagnostic, and investigative tool, an understanding of the underpinnings of P300 and N200 physiology may support its application to both the basic neuroscience and clinical medical settings. The authors present a synthesis of current understanding of these two deflections in both normal and pathological states.
Discrete anatomic structures in the monkey somatic sensory thalamus may segregate input arising from different peripheral receptors and from different parts of the body. It has been proposed that these structures serve as components of modality- and place-specific pathways from the periphery to the cortex. We now test this hypothesis by examining the modality- and place-specific segregation of sensations at sites where microstimulation (microA currents) within the region of ventral caudal (Vc; human principal somatic sensory nucleus) evokes somatic sensations. Microstimulation was delivered in an ascending staircase protocol consisting of different numbers of pulses (4-100) presented at different frequencies (10-200 Hz) during awake thalamic surgery for movement disorders. The results demonstrate that the part of the body where microstimulation evoked sensation (projected field) and the descriptors of nonpainful sensations were usually uniform across the staircase. These results strongly support the existence of psychophysical elements of place and modality specificity in the Vc thalamus. The proportion of sites at which the sensation included more than one part of the body almost always stayed constant over current intervals (plateaus) of 10 microA. Similar plateaus were not found for sites with more than one descriptor, suggesting that elements of modality-specificity are smaller than and located within those for place-specificity. The intensity of sensations varied with the number of stimulation pulses for mechanical/tingle and cool sensations. The results provide strong evidence for psychophysically defined elements that are responsible for modality specificity of nonpainful sensations, place specificity, and intensity coding of somatic sensation in the human thalamus.
The migration of the distal catheter probably occurred during the initial VP shunt placement. The internal jugular vein probably was perforated by the tunneler during the creation of the distal catheter tract. Slow venous flow and negative inspiratory pressure may have gradually pulled the catheter up into the right atria and ventricle. As demonstrated by our case report, the catheter can be extracted safely in a joint procedure with cardiac surgeons, and a thoracotomy is not always necessary. The patient did not experience postoperative complications, and his hypertension was alleviated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.