In this paper, we extend the epsilon admissible subsets (EAS) model selection approach, from its original construction in the high-dimensional linear regression setting, to an EAS framework for performing group variable selection in the high-dimensional multivariate regression setting. Assuming a matrix-Normal linear model we show that the EAS strategy is asymptotically consistent if there exists a sparse, true data generating set of predictors. Nonetheless, our EAS strategy is designed to estimate a posterior-like, generalized fiducial distribution over a parsimonious class of models in the setting of correlated predictors and/or in the absence of a sparsity assumption. The effectiveness of our approach, to this end, is demonstrated empirically in simulation studies, and is compared to other state-of-the-art model/variable selection procedures.
Modern studies from a variety of fields record multiple functional observations according to either multivariate, longitudinal, spatial, or time series designs. We refer to such data as second-generation functional data because their analysis—unlike typical functional data analysis, which assumes independence of the functions—accounts for the complex dependence between the functional observations and requires more advanced methods. In this article, we provide an overview of the techniques for analyzing second-generation functional data with a focus on highlighting the key methodological intricacies that stem from the need for modeling complex dependence, compared with independent functional data. For each of the four types of second-generation functional data presented—multivariate functional data, longitudinal functional data, functional time series and spatially functional data—we discuss how the widely popular functional principal component analysis can be extended to these settings to define, identify main directions of variation, and describe dependence among the functions. In addition to modeling, we also discuss prediction, statistical inference, and application to clustering. We close by discussing future directions in this area.
In many modern applications, a dependent functional response is observed for each subject over repeated time, leading to longitudinal functional data. In this paper, we propose a novel statistical procedure to test whether the mean function varies over time. Our approach relies on reducing the dimension of the response using data-driven orthogonal projections and it employs a likelihood-based hypothesis testing. We investigate the methodology theoretically and discuss a computationally efficient implementation. The proposed test maintains the type I error rate, and shows excellent power to detect departures from the null hypothesis in finite sample simulation studies. We apply our method to the longitudinal diffusion tensor imaging study of multiple sclerosis (MS) patients to formally assess whether the brain's health tissue, as summarized by fractional anisotropy (FA) profile, degrades over time during the study period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.