SignificanceOne of the first crucial steps of animal development is to distinguish the anterior versus the posterior pole of the embryo, i.e., the AP axis. If this process fails, embryos may develop two mirror image tails or heads. In the fly Drosophila, the mother provides the signals required for AP axis formation, while in vertebrates, gene activity of the embryo is required as well. We identified two genes whose knockdown leads to double-tail phenotypes in the beetle Tribolium, representing the insect-typical short-germ embryogenesis. Intriguingly, embryo polarity depends on zygotic gene activities and Wnt signaling. Hence, short-germ insect axis formation is more similar to vertebrates than the mechanism employed by Drosophila.
Background
Most of the known genes required for developmental processes have been identified by genetic screens in a few well-studied model organisms, which have been considered representative of related species, and informative—to some degree—for human biology. The fruit fly Drosophila melanogaster is a prime model for insect genetics, and while conservation of many gene functions has been observed among bilaterian animals, a plethora of data show evolutionary divergence of gene function among more closely-related groups, such as within the insects. A quantification of conservation versus divergence of gene functions has been missing, without which it is unclear how representative data from model systems actually are.
Results
Here, we systematically compare the gene sets required for a number of homologous but divergent developmental processes between fly and beetle in order to quantify the difference of the gene sets. To that end, we expanded our RNAi screen in the red flour beetle Tribolium castaneum to cover more than half of the protein-coding genes. Then we compared the gene sets required for four different developmental processes between beetle and fly. We found that around 50% of the gene functions were identified in the screens of both species while for the rest, phenotypes were revealed only in fly (~ 10%) or beetle (~ 40%) reflecting both technical and biological differences. Accordingly, we were able to annotate novel developmental GO terms for 96 genes studied in this work. With this work, we publish the final dataset for the pupal injection screen of the iBeetle screen reaching a coverage of 87% (13,020 genes).
Conclusions
We conclude that the gene sets required for a homologous process diverge more than widely believed. Hence, the insights gained in flies may be less representative for insects or protostomes than previously thought, and work in complementary model systems is required to gain a comprehensive picture. The RNAi screening resources developed in this project, the expanding transgenic toolkit, and our large-scale functional data make T. castaneum an excellent model system in that endeavor.
In this report we present an extended linkage map of the American mink (Neovison vison) consisting of 157 microsatellite markers and comprising at least one linkage group for each of the autosomes. Each linkage group has been assigned to a chromosome and oriented by fluorescence in situ hybridization (FISH) and/or by means of human/dog/mink comparative homology. The average interval between markers is 8.5 cM and the linkage groups collectively span 1340 cM. In addition, 217 and 275 mink microsatellites have been placed on human and dog genomes, respectively. In conjunction with the existing comparative human/dog/mink data, these assignments represent useful virtual maps for the American mink genome. Comparison of the current human/dog assembled sequential map with the existing Zoo-FISH-based human/dog/mink maps helped to refine the human/dog/mink comparative map. Furthermore, comparison of the human and dog genome assemblies revealed a number of large synteny blocks, some of which are corroborated by data from the mink linkage map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.