A novel method of colour image segmentation based on fuzzy homogeneity and data fusion techniques is presented. The general idea of mass function estimation in the Dempster-Shafer evidence theory of the histogram is extended to the homogeneity domain. The fuzzy homogeneity vector is used to determine the fuzzy region in each primitive colour, whereas, the evidence theory is employed to merge different data sources in order to increase the quality of the information and to obtain an optimal segmented image. Segmentation results from the proposed method are validated and the classification accuracy for the test data available is evaluated, and then a comparative study versus existing techniques is presented. The experimental results demonstrate the superiority of introducing the fuzzy homogeneity method in evidence theory for image segmentation.
In this paper, the problem of colour image segmentation is addressed using the Dempster-Shafer (DS) theory. Examples are provided showing that this theory is able to take into account a large variety of special situations that occur and which are not well solved using classical approaches. Modelling both uncertainty and imprecision, and computing the conflict between images and introducing a priori information are the main features of this theory. Consequently, the performance of such a segmentation scheme is largely conditioned by the appropriate estimation of mass functions in the DS evidence theory. In this paper, a new method of automatically determining the mass function for colour-image segmentation problems is presented. The mass function of each pixel is determined by applying possibilistic c-means (PCM) clustering to the grey levels of the three primitive colours. A reliability criterion, associ- Circuits Syst Signal Process (2011) 30: 55-71 ated with each pixel and the mass functions of its neighbouring pixels, is used into a fuzzy based reasoning system in order to decide on the appropriate segmentation. Experimental segmentation results on medical and textured colour images highlight the effectiveness of the proposed method.
In this paper, a color image segmentation approach based on Dempster-Shafer evidence theory is presented. The basic technique consists in combining information coming from three independent information sources for the same image. These sources correspond to the three component images R (red), G (green) and B (blue). The Dempster-Shafer theory of evidence is applied in order to fuse the information from these three sources. This method shows the spectacular ability of the evidence theory to handling uncertain, imprecise and incomplete information. The Results on cell images are presented in order to demonstrate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.