Cancer progression occurs in concomitance with a profound remodeling of the cellular microenvironment. Far from being a mere passive event, the re-orchestration of interactions between the various cell types surrounding tumors highly contributes to the progression of the latter. Tumors notably recruit and stimulate the sprouting of new blood vessels through a process called neo-angiogenesis. Beyond helping the tumor cope with an increased metabolic demand associated with rapid growth, this also controls the metastatic dissemination of cancer cells and the infiltration of immune cells in the tumor microenvironment. To decipher this critical interplay for the clinical progression of tumors, the research community has developed several valuable models in the last decades. This review offers an overview of the various instrumental solutions currently available, including microfluidic chips, co-culture models, and the recent rise of organoids. We highlight the advantages of each technique and the specific questions they can address to better understand the tumor immuno-angiogenic ecosystem. Finally, we discuss this development field’s fundamental and applied perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.