BackgroundBiobanks and biospecimen collections are becoming a primary means of delivering personalized diagnostics and tailoring individualized therapeutics. This shift towards precision medicine (PM) requires interactions among a variety of stakeholders, including the public, patients, healthcare providers, government, and donors. Very few studies have investigated the role of healthcare students in biobanking and biospecimen donations. The main aims of this study were (1) to evaluate the knowledge of senior healthcare students about biobanks and (2) to assess the students’ willingness to donate biospecimens and the factors influencing their attitudes.MethodsA cross-sectional study was conducted among senior healthcare students at King Abdulaziz University (KAU), Saudi Arabia. The data were obtained using a self-administered questionnaire in English. In addition to the respondents’ biographical data section, the questionnaire assessed the respondents’ general knowledge about biobanking, the factors influencing their willingness to donate biospecimens to biobanks and their general attitudes towards biomedical research.ResultsA total of 597 senior healthcare students were included in the study. The general knowledge score was 3.2 (±1.6) out of 7. Only approximately 44% and 27% of students were aware of the terms “Human Genome Project” (HGP) and “biobank,” respectively. The majority of the students (89%) were willing to donate biospecimens to biobanks. Multiple factors were significantly associated with their willingness to donate, including their perceived general health (p < 0.001), past experience with both tissue testing (p < 0.04) and tissue donation (p < 0.001), biobanking knowledge score (p < 0.001) and biomedical research attitude score (p < 0.001). The main reasons for students’ willingness to donate were advancement of medical research and societal benefits, whereas misuse of biospecimens and confidentiality breaches were the main reasons for a reluctance to donate.ConclusionDespite their strong willingness to donate biospecimens, students exhibited a notable lack of knowledge about biobanking and the HGP. To expedite the transition towards PM, it is highly recommended to enhance healthcare curricula by including more educational and awareness programmes to familiarize students with OMICs technologies in addition to the scope of research and clinical applications.
This study was carried out to determine the median lethal concentrations (LC50) of Zinc nanoparticles (ZnNPs) on Oreochromis niloticus and Tilapia zillii. The biochemical and molecular potential effects of ZnNPs (500 and 2000 μg L−1) on the antioxidant system in the brain tissue of O. niloticus and T. zillii were investigated. Four hundred fish were used for acute and sub-acute studies. ZnNP LC50 concentrations were investigated in O. niloticus and T. zillii. The effect of 500 and 2000 μg L−1 ZnNPs on brain antioxidants of O. niloticus and T. zillii was investigated. The result indicated that 69 h LC50 was 5.5 ± 0.6 and 5.6 ± 0.4 for O. nilotica and T. zillii, respectively. Fish exposed to 500 μg L−1 ZnNPs showed a significant increase in reduced glutathione (GSH), total glutathione (tGSH) levels, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activity and gene expression. On the contrary, malondialdehyde (MDA) levels significantly decreased. Meanwhile, fish exposed to 2000 μg L−1 ZnNPs showed a significant decrease of GSH, tGSH levels, SOD, CAT, GR, GPx and GST activity and gene expression. On the contrary, MDA levels significantly increased. It was concluded that, the 96 h LC50 of ZnNPs was 5.5 ± 0.6 and 5.6 ± 0.4 for O. nilotica and T. zillii, respectively. ZnNPs in exposure concentrations of 2000 μg/L induced a deleterious effect on the brain antioxidant system of O. nilotica and T. zillii. In contrast, ZnNPs in exposure concentrations of 500 μg L−1 produced an inductive effect on the brain antioxidant system of O. nilotica and T. zillii.
(1) Background: Enterococcus faecium DO is an environmental microbe, which is a mesophilic, facultative, Gram-positive, and multiple habitat microorganism. Enterococcus faecium DO is responsible for many diseases in human. The fight against infectious diseases is confronted by the development of multiple drug resistance in E. faecium. The focus of this research work is to identify a novel compound against this pathogen by using bioinformatics tools and technology. (2) Methods: We screened the proteome (accession No. PRJNA55353) information from the genome database of the National Centre for Biotechnology Information (NCBI) and suggested a potential drug target. I-TASSER was used to predict the three-dimensional structure of the protein, and the structure was optimized and minimized by different tools. PubChem and ChEBI were used to retrieve the inhibitors. Pharmacophore modeling and virtual screening were performed to identify novel compounds. Binding interactions of compounds with target protein were checked using LigPlot. pkCSM, SwissADME, and ProTox-II were used for adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. (3) Results: Novel selected compounds have improved absorption and have better ADMET properties. Based on our results, the chemically identified inhibitor ZINC48942 targeted the receptor that can inhibit the activity of infection in E. faecium. This research work will be beneficial for the scientific community and could aid in the design of a new drug against E. faecium infections. (4) Conclusions: It was observed that novel compounds are potential inhibitors with more efficacy and fewer side effects. This research work will help researchers in testing and identification of these chemicals useful against E. faecium.
Results indicate that exposure of and to Ag-NPs (4 mg/L) has deleterious effects on brain antioxidant system, whereas a dose of 2 mg/L has no effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.