Understanding how species’ thermal limits have evolved across the tree of life is central to predicting species’ responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary ‘attractors’ that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry. Conversely, heat tolerance appears unrelated to climate ancestry. Cold tolerance has evolved more quickly than heat tolerance in endotherms and ectotherms. If the past tempo of evolution for upper thermal limits continues, adaptive responses in thermal limits will have limited potential to rescue the large majority of species given the unprecedented rate of contemporary climate change.
Animal culture, defined as "information or behavior-shared within a community-which is acquired from conspecifics through some form of social learning" (1), can have important consequences for the survival and reproduction of individuals, social groups, and potentially, entire populations (1, 2). Yet, until recently, conservation strategies and policies have focused primarily on broad demographic responses and the preservation of genetically defined, evolutionarily significant units. A burgeoning body of evidence on cultural transmission and other aspects of sociality (3) is now affording critical insights into what should be conserved (going beyond the protection of genetic diversity, to consider adaptive aspects of phenotypic variation), and why specific conservation programs succeed (e.g., through facilitating the resilience of cultural diversity) while others fail (e.g., by neglecting key repositories of socially transmitted knowledge). Here, we highlight how international legal instruments, such as the Convention on the Conservation of Migratory Species of Wild Animals (CMS), can facilitate smart, targeted conservation of a wide range of taxa, by explicitly considering aspects of their sociality and cultures. CONSEQUENCES OF SOCIAL KNOWLEDGE An important aspect of social learning is the speed with which new behaviors can potentially spread through populations, with effects that may be positive (e.g., adaptive exploitation of a new food source) or negative (e.g., increasing conflict with humans, such as when sperm whales learn to remove fish from longlines) (2). Transmission can be mediated by an inherent propensity to adopt innovations (e.g., "lobtail" feeding in humpback whales (1)), or curbed by cultural conservatism (e.g., southern resident killer whales' persistent foraging specialization on Chinook salmon (2)). Social learning can result in the emergence of subpopulations with distinctive behavioral profiles, erecting social barriers, as observed in distinct vocal clans of sperm whales (see the Figure). Culturally mediated population structure has important implications for conservation efforts (4), as it can influence species-wide phenotypic diversity and adaptability to changing conditions (5). In some cases, such as humpback or blue whale song, cultural variation can reflect demography and facilitate more efficient, or less invasive, assays of contemporary genetic population structure (1, 4). Most profoundly, culture can play a causal role in establishing and maintaining distinct evolutionary trajectories (6). Another consequence of social learning can be the increased importance of key individuals as repositories of accumulated knowledge, making their targeted protection particularly important for the persistence of social units. For example, the experience of African elephant matriarchs (see
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.