Objective:To evaluate three image acquisition presets for four-dimensional cone beam CT (CBCT) to identify an optimal preset for lung tumour image quality while minimizing dose and acquisition time.Methods:Nine patients undergoing radical conventionally fractionated radiotherapy for lung cancer had verification CBCTs acquired using three presets: Preset 1 on Day 1 (11 mGy dose, 240 s acquisition time), Preset 2 on Day 2 (9 mGy dose, 133 s acquisition time) and Preset 3 on Day 3 (9 mGy dose, 67 s acquisition time). The clarity of the tumour and other thoracic structures, and the acceptability of the match, were retrospectively graded by visual grading analysis (VGA). Logistic regression was used to identify the most appropriate preset and any factors that might influence the result.Results:Presets 1 and 2 met a clinical requirement of 75% of structures to be rated “Clear” or above and 75% of matches to be rated “Acceptable” or above. Clarity is significantly affected by preset, patient, observer and structure. Match acceptability is significantly affected by preset.Conclusion:The application of VGA in this initial study enabled a provisional selection of an optimal preset (Preset 2) to be made.Advances in knowledge:This was the first application of VGA to the investigation of presets for CBCT.
Background and purpose Transperineal ultrasound (TPUS) is used clinically for directly assessing prostate motion. Factors affecting accuracy and precision in TPUS motion estimation must be assessed to realise its full potential. Methods and materials Patients were imaged using volumetric TPUS during the Clarity-Pro trial (NCT02388308). Prostate motion was measured online at patient set-up and offline by experienced observers. Cone beam CT with markers was used as a comparator and observer performance was also quantified. The influence of different clinical factors was examined to establish specific recommendations towards efficacious ultrasound guided radiotherapy. Results From 330 fractions in 22 patients, offline observer random errors were 1.5 mm, 1.3 mm, 1.9 mm (left–right, superior-inferior, anteroposterior respectively). Errors increased in fractions exhibiting poor image quality to 3.3 mm, 3.3 mm and 6.8 mm. Poor image quality was associated with inconsistent probe placement, large anatomical changes and unfavourable imaging conditions within the patient. Online matching exhibited increased observer errors of: 3.2 mm, 2.9 mm and 4.7 mm. Four patients exhibited large systematic residual errors, of which three had poor quality images. Patient habitus showed no correlation with observer error, residual error, or image quality. Conclusions TPUS offers the unique potential to directly assess inter- and intra-fraction motion on conventional linacs. Inconsistent image quality, inexperienced operators and the pressures of the clinical environment may degrade precision and accuracy. Experienced operators are essential and cross-centre standards for training and QA should be established that build upon current guidance. Greater use of automation technologies may further minimise uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.