The functional architecture of adult cerebral cortex retains a capacity for experience-dependent change. This is seen following focal binocular lesions, which induce rapid changes in receptive field size and position. To follow the dynamics of the circuitry underlying these changes, we imaged the intrinsic long-range horizontal connections within the lesion projection zone (LPZ) in adult macaque primary visual cortex. To image the same axons over time, we combined viral vector-mediated EGFP transfer and two-photon microscopy. The lesion triggered, within the first week, an approximately 2-fold outgrowth of axons toward the center of the LPZ. Over the subsequent month, axonal density declined due to a parallel process of pruning and sprouting but maintained a net increase relative to prelesion levels. The rate of turnover of axonal boutons also increased. The axonal restructuring recapitulates the pattern of exuberance and pruning seen in early development and correlates well with the functional changes following retinal lesions.
Electrophysiology-delivery of fluorescent viral vectors-and two-photon microscopy were used to demonstrate the rapidity of axonal restructuring of both excitatory and inhibitory neurons in rodent cortical layer II/III following alterations in sensory experience.
The functional properties of adult cortical neurons are subject to alterations in sensory experience. Retinal lesions lead to remapping of cortical topography in the region of primary visual cortex representing the lesioned part of the retina, the lesion projection zone (LPZ), with receptive fields shifting to the intact parts of the retina. Neurons within the LPZ receive strengthened input from the surrounding region by growth of the plexus of excitatory long-range horizontal connections. Here, by combining cell type-specific labeling with a genetically engineered recombinant adeno-associated virus and in vivo two-photon microscopy in adult macaques, we showed that the remapping was also associated with alterations in the axonal arbors of inhibitory neurons, which underwent a parallel process of pruning and growth. The axons of inhibitory neurons located within the LPZ extended across the LPZ border, suggesting a mechanism by which new excitatory input arising from the peri-LPZ is balanced by reciprocal inhibition arising from the LPZ.
Perceptual learning is associated with changes in the functional properties of neurons even in primary sensory areas. In macaque monkeys trained to perform a contour detection task, we have observed changes in contour-related facilitation of neuronal responses in primary visual cortex that track their improvement in performance on a contour detection task. We have previously explored the anatomical substrate of experience-dependent changes in the visual cortex based on a retinal lesion model, where we find sprouting and pruning of the axon collaterals in the cortical lesion projection zone. Here, we attempted to determine whether similar changes occur under normal visual experience, such as that associated with perceptual learning. We labeled the long-range horizontal connections in visual cortex by virally mediated transfer of genes expressing fluorescent probes, which enabled us to do longitudinal two-photon imaging of axonal arbors over the period during which animals improve in contour detection performance. We found that there are substantial changes in the axonal arbors of neurons in cortical regions representing the trained part of the visual field, with sprouting of new axon collaterals and pruning of preexisting axon collaterals. Our findings indicate that changes in the structure of axonal arbors are part of the circuit-level mechanism of perceptual learning, and further support the idea that the learned information is encoded at least in part in primary visual cortex.
Sensory experience alters cortical circuitry by parallel processes of axon outgrowth and pruning, but the mechanisms that control these rearrangements are poorly understood. Using in vivo 2-photon longitudinal imaging, we found a marked reduction in axonal pruning in somatosensory cortex of mice with a knock-out of the DR6 gene, which codes for Death Receptor 6. This effect was seen for both long-range horizontal excitatory connections and for the axons of inhibitory neurons. These results identify a new pathway governing axonal plasticity associated with experience-dependent changes in cortical maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.