Pulmonary hypertension is a highly prevalent complication of sickle cell disease and is a strong risk factor for early mortality. However, the pathophysiologic mechanisms leading to pulmonary vasculopathy remain unclear. Transgenic mice provide opportunities for mechanistic studies of vascular pathophysiology in an animal model. By microcardiac catheterization, all mice expressing exclusively human sickle hemoglobin had pulmonary hypertension, profound pulmonary and systemic endothelial dysfunction, and vascular instability characterized by diminished responses to authentic nitric oxide (NO), NO donors, and endothelium-dependent vasodilators and enhanced responses to vasoconstrictors. However, endothelium-independent vasodilation in sickle mice was normal. Mechanisms of vasculopathy in sickle mice involve global dysregulation of the NO axis: impaired constitutive nitric oxide synthase activity (NOS) with loss of endothelial NOS (eNOS) dimerization, increased NO scavenging by plasma hemoglobin and superoxide, increased arginase activity, and depleted intravascular nitrite reserves. Light microscopy and computed tomography revealed no plexogenic arterial remodeling or thrombi/ emboli. Transplanting sickle marrow into wild-type mice conferred the same phenotype, and similar pathobiology was observed in a nonsickle mouse model of acute alloimmune hemolysis. Although the time course is shorter than typical pulmonary hypertension in human sickle cell disease, these results demonstrate that hemolytic anemia is sufficient to produce endothelial dysfunction and global dysregulation of NO. IntroductionPulmonary hypertension is a highly prevalent complication of sickle cell disease that is associated with early mortality. [1][2][3][4] The putative mechanisms responsible for pulmonary hypertension are the focus of intense current research and remain incompletely defined. 5 One mechanism proposed is that hemolytic anemia and decompartmentalization of erythrocyte hemoglobin and arginase into plasma leads to nitric oxide (NO) scavenging and arginine degradation, limiting the bioavailability of NO. 3,[6][7][8][9][10] This process would ultimately lead to acute changes in pulmonary vascular endothelial and vasomotor function and chronic pathologic intimal and smooth muscle hyperplasia. Alternatively, chronic lung disease caused by recurrent pulmonary infarction, pneumonia, acute chest syndrome, and thromboembolism could lead to chronic hypoxemia, pulmonary fibrosis, thrombotic vascular obliteration, and secondary pulmonary hypertension. [11][12][13][14][15] Pulmonary hypertension could also arise from chronic hypoxia or chronic nocturnal hypoxia. [16][17][18] Additional factors contributing to pulmonary hypertension include right-heart failure secondary to a chronic high cardiac output as compensation for chronic anemia and left ventricular diastolic dysfunction secondary to cardiac tissue microinfarction and/or iron overload. [19][20][21][22] In short, is exposure to hemoglobin S (HbS) erythrocytes sufficient to cause pulmonar...
Female sex, black race, and fear of hospitals are three major factors negatively associated with prior history of blood donation. Fear of hospitals affects blood donation patterns across race and sex groups. Future study is needed to determine whether recruitment of blood donors may be more efficient if focused toward women, minorities, and donors' fears of healthcare facilities or hospitals.
Allogeneic hematopoietic stem cell transplantation (HSCT) is rarely performed in adult patients with sickle cell disease (SCD). We utilized the chemotherapy-free, alemtuzumab/total body irradiation 300 cGy regimen with sirolimus as post-transplantation immunosuppression in 13 high-risk SCD adult patients between November 2011 and June 2014. Patients received matched related donor (MRD) granulocyte colony-stimulating factor-mobilized peripheral blood stem cells, including 2 cases that were ABO incompatible. Quality-of-life (QoL) measurements were performed at different time points after HSCT. All 13 patients initially engrafted. A stable mixed donor/recipient chimerism was maintained in 12 patients (92%), whereas 1 patient not compliant with sirolimus experienced secondary graft failure. With a median follow-up of 22 months (range, 12 to 44 months) there was no mortality, no acute or chronic graft-versus-host disease (GVHD), and no grades 3 or 4 extramedullary toxicities. At 1 year after transplantation, patients with stable donor chimerism have normalized hemoglobin concentrations and improved cardiopulmonary and QoL parameters including bodily pain, general health, and vitality. In 4 patients, sirolimus was stopped without rejection or SCD-related complications. These results underscore the successful use of a chemotherapy-free regimen in MRD HSCT for high-risk adult SCD patients and demonstrates a high cure rate, absence of GVHD or mortality, and improvement in QoL including the applicability of this regimen in ABO mismatched cases (NCT number 01499888).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.