Cytokine gene expression in cells migrating in afferent and efferent intestinal lymph was monitored for extended time periods in individual sheep experimentally infected with the nematode Trichostrongylus colubriformis. Animals from stable selection lines with increased levels of either genetic resistance (R) or susceptibility (S) to nematode infection were used. Genes for interleukin-5 (IL-5), IL-13, and tumor necrosis factor alpha (TNF-␣), but not for IL-4, IL-10, or gamma interferon (IFN-␥), were consistently expressed at higher levels in both afferent and efferent lymph cells of R sheep than in S sheep. However, only minor differences were observed in the surface phenotypes and antigenic and mitogenic responsiveness of cells in intestinal lymph between animals from the two selection lines. The IL-4 and IL-10 genes were expressed at higher levels in afferent lymph cells than in efferent lymph cells throughout the course of the nematode infection in animals of both genotypes, while the proinflammatory TNF-␣ gene was relatively highly expressed in both lymph types. These relationships notwithstanding, expression of the IL-10 and TNF-␣ genes declined significantly in afferent lymph cells but not in efferent lymph cells during infection. Collectively, the results showed that R-line sheep developed a strong polarization toward a Th2-type cytokine profile in immune cells migrating in lymph from sites where the immune response to nematodes was initiated, although the IFN-␥ gene was also expressed at moderate levels. Genes or alleles that predispose an animal to develop this type of response appear to have segregated with the R selection line and may contribute to the increased resistance of these animals.
We applied precise zygote-mediated genome editing to eliminate beta-lactoglobulin (BLG), a major allergen in cows’ milk. To efficiently generate LGB knockout cows, biopsied embryos were screened to transfer only appropriately modified embryos. Transfer of 13 pre-selected embryos into surrogate cows resulted in the birth of three calves, one dying shortly after birth. Deep sequencing results confirmed conversion of the genotype from wild type to the edited nine bp deletion by more than 97% in the two male calves. The third calf, a healthy female, had in addition to the expected nine bp deletion (81%), alleles with an in frame 21 bp deletion (<17%) at the target site. While her milk was free of any mature BLG, we detected low levels of a BLG variant derived from the minor deletion allele. This confirmed that the nine bp deletion genotype completely knocks out production of BLG. In addition, we showed that the LGB knockout animals are free of any TALEN-mediated off-target mutations or vector integration events using an unbiased whole genome analysis. Our study demonstrates the feasibility of generating precisely biallelically edited cattle by zygote-mediated editing for the safe production of hypoallergenic milk.
Cre recombinase (Cre)-mediated targeted insertion of a transgene is a powerful technique that can be used to tailor genomes. When combined with somatic cell nuclear transfer it could offer an efficient way to generate transgenic livestock with site-specific genetic modifications that are free of antibiotic selection markers. We have engineered primary bovine fibroblasts to contain a chromosomal acceptor site with incompatible loxP/lox2272 sites for Cre-mediated cassette exchange and show for the first time that Cre-mediated targeting can be applied in these acceptor cells. Molecular characterization of the resulting cell clones revealed Cre-mediated transgene insertion efficiencies of up to 98% when antibiotic selection was used to identify transgene containing cell clones. Most clonal lines also contained random insertions of the targeting and Cre expression plasmids with only about 10% of the clones being exclusively modified by the intended targeted insertion. This targeting efficiency was sufficient to enable the isolation of correctly targeted clones without the help of antibiotic selection. Therefore, this recombinase-mediated insertion strategy has the potential to produce transgenic cattle from antibiotic selection marker-free somatic cells with transgenes inserted into proven genomic loci ensuring reliable expression levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.