The power system self-healing concept needs accurate and reliable fault detection, classification, and location (FDCL). This research proposes a novel and robust FDCL approach for distribution networks (DNs) in proportion to self-healing requirements. The proposed algorithm utilized a discrete wavelet transform (DWT) to decompose the measured current and zero sequence current component of only one terminal (substation) to detect and classify all fault types with the identification of the faulted phase (s). The fault location is achieved by integrating DWT and support vector machine (SVM). The data for training were extracted using DWT and collected, and then SVM was trained to locate the faulted section. The simplicity of the applied approach, ignoring DG’s data that is merged into the system, reduced training data and time, ability to diagnose all fault types, and high accuracy are the most significant contributions. The proposed techniques are tested on IEEE 33 bus DN with two distributed generation (DG) units, which are simulated in MATLAB. The simulation results demonstrate that the proposed methods give more accurate and reliable results for diagnosing the faults (FDCL) of various fault sorts, DN size, and resistance levels.
This research addresses two topics: the first is the optimal coordination of overcurrent relays (OCRs), which has recently become a major challenge to ensure reliability and speed of relays’ operation, and the second is a modified circuit added to the OCR to vanquish the barriers caused by the ever-increasing participation of distributed energy resources (DERs), at a lower cost. For robust and reliable OCRs coordination, various types of optimization techniques are frequently used to find optimal OCRs settings in distribution networks (DNs). In this study, the improved wild horse optimization (IWHO) algorithm is used as a novel metaheuristic method for solving optimization issues in coordination of OCRs in a distribution network, for the first time. This technique is used to determine the optimal time multiplier setting (TMS) and optimal pickup setting (PS) of OCRs in order to minimize the overall operating time. The results of the proposed algorithm are compared with those obtained from other recent metaheuristic techniques. The obtained TMS and PS settings of each relay show the effectiveness of the proposed IWHO technique in terms of accuracy and speed in a medium scale radial network configuration. To replace the costly mitigation methods employed in the DN comprising DER, a simple circuit was proposed to be added to the OCR. Using the angle’s sign of positive sequence current component (PSCC) of fault current solely, this proposed circuit can detect the fault direction and assist the OCR in making the correct decision in fault detection and clearing with high penetration of DERs. IEEE-33 bus electrical power system has been used to validate the newly proposed protective solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.