Gene flow between populations can allow the spread of beneficial alleles and genetic diversity between populations, with importance to conservation, invasion biology, and agriculture. Levels of gene flow between populations vary not only with distance, but also with divergence in reproductive phenology. Since phenology is often locally adapted, arriving migrants may be reproductively out of synch with residents, which can depress realized gene flow. In flowering plants, the potential impact of phenological divergence on hybridization between populations can be predicted from overlap in flowering schedules—the daily count of flowers capable of pollen exchange—between a resident and migrant population. The accuracy of this prospective hybridization estimate, based on parental phenotypes, rests upon the assumptions of unbiased pollen transfer between resident and migrant active flowers. We tested the impact of phenological divergence on resident–migrant mating frequencies in experiments that mimicked a single large gene flow event. We first prospectively estimated mating frequencies two lines of Brassica rapa selected or early and late flowering. We then estimated realized mating frequencies retrospectively through progeny testing. The two estimates strongly agreed in a greenhouse experiment, where procedures ensured saturating, unbiased pollination. Under natural pollination in the field, the rate of resident–migrant mating, was lower than estimated by phenological divergence alone, although prospective and retrospective estimates were correlated. In both experiments, differences between residents and migrants in flowering schedule shape led to asymmetric hybridization. Results suggest that a prospective estimate of hybridization based on mating schedules can be a useful, although imperfect, tool for evaluating potential gene flow. They also illustrate the impact of mating phenology on the magnitude and symmetry of reproductive isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.