The COVID-19 pandemic has presented a series of new challenges to governments and health care systems. Testing is one important method for monitoring and therefore controlling the spread of COVID-19. Yet with a serious discrepancy in the resources available between rich and poor countries not every country is able to employ widespread testing. Here we developed machine learning models for predicting the number of COVID-19 cases in a country based on multilinear regression and neural networks models. The models are trained on data from US states and tested against the reported infections in the European countries. The model is based on four features: Number of tests Population Percentage Urban Population and Gini index. The population and number of tests have the strongest correlation with the number of infections. The model was then tested on data from European countries for which the correlation coefficient between the actual and predicted cases R2 was found to be 0.88 in the multi linear regression and 0.91 for the neural network model. The model predicts that the actual number of infections in countries where the number of tests is less than 10% of their populations is at least 26 times greater than the reported numbers.
Background: The COVID-19 pandemic has presented a series of new challenges to governments and healthcare systems. Testing is one important method for monitoring and controlling the spread of COVID-19. Yet with a serious discrepancy in the resources available between rich and poor countries, not every country is able to employ widespread testing. Methods and Objective: Here, we have developed machine learning models for predicting the prevalence of COVID-19 cases in a country based on multilinear regression and neural network models. The models are trained on data from US states and tested against the reported infections in European countries. The model is based on four features: Number of tests, Population Percentage, Urban Population, and Gini index. Results: The population and the number of tests have the strongest correlation with the number of infections. The model was then tested on data from European countries for which the correlation coefficient between the actual and predicted cases R2 was found to be 0.88 in the multi-linear regression and 0.91 for the neural network model Conclusion: The model predicts that the actual prevalence of COVID-19 infection in countries where the number of tests is less than 10% of their populations is at least 26 times greater than the reported numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.