Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.
The global biodiversity crisis concerns not only unprecedented loss of species within communities, but also related consequences for ecosystem function. Community ecology focuses on patterns of species richness and community composition, whereas ecosystem ecology focuses on fluxes of energy and materials. Food webs provide a quantitative framework to combine these approaches and unify the study of biodiversity and ecosystem function. We summarise the progression of foodweb ecology and the challenges in using the food-web approach. We identify five areas of research where these advances can continue, and be applied to global challenges. Finally, we describe what data are needed in the next generation of food-web studies to reconcile the structure and function of biodiversity.Reconciling the study of biodiversity and ecosystem function We are experiencing two interrelated global ecological crises. One is in biodiversity, with unprecedented rates of species loss across all major ecosystems, combined with greatly accelerated biotic exchange between landmasses [1]. Consequently, spatial and temporal patterns of species occurrence are being fundamentally altered by extinction and invasion. The second crisis concerns the regulation of ecological processes and the ecosystem services they provide. Processes such as primary production and nutrient cycling have been severely altered by human activities [1].Our understanding of biodiversity comes largely from a sound theoretical and empirical basis provided by community ecology, including core concepts such as niche segregation [2] and Island Biogeography [3,4]. Early studies of individual species' habitat preferences and physiological tolerances have been complemented by studies of interspecific interactions from field surveys and experiments. Applications such as conservation management depend largely on mapping of community patterns and studies of habitat occupancy and preferences. More recently, habitat models have been applied, and the advent of simple and cheap molecular markers has allowed quantification of important community assembly (see Glossary) processes such as dispersal [5]. In community ecology the unit of study is the individual, population, or species, consistent with other sub-disciplines such as behavioural and population biology. Review GlossaryAssembly: the set of processes by which a food web is rebuilt after disturbance or the creation of new habitat. Bioenergetics: the flow and transformation of energy in and between living organisms and between living organisms and their environment. Cascade model: a food-web model which assumes hierarchical feeding along a single niche axis, with each species allocated a probability of feeding on taxa below it in the hierarchy. Community web: a food web intended to include all species and trophic links that occur within a defined ecological community. 'Species' in this sense might involve various degrees of aggregation or division of biological species. Compartmentalisation: the property by which one subset of sp...
1. Resource quality and stoichiometric imbalances in carbon : nutrient ratios between consumers and resources can influence key ecosystem processes. In many streams, this has important implications for food webs that are based largely upon the utilization of terrestrial leaf-litter, which varies widely among litter types in its value as a food source for detritivores and as a substrate for microbial decomposers. 2. We measured breakdown rates and macroinvertebrate colonization of leaf-litter from a range of native and exotic plants of differing resource quality and palatability to consumers [e.g. carbon : nitrogen : phosphorus (C : N : P) ratios, lignin and cellulose content], in a field experiment. We also measured C : N : P ratios of the principal leafshredding invertebrates, which revealed strong stoichiometric imbalances across trophic levels: C : N and C : P ratios typically differed by at least one order of magnitude between consumers and resources, whereas N : P imbalances were less marked. Application of the threshold elemental ratio approach, which integrates animal bioenergetics and body elemental composition in examining nutrient deficiency between consumers and resources, revealed less marked C : P imbalances than those based on the simpler arithmetic differences described above. 3. Litter breakdown rates declined as nutrient imbalances widened and resource quality fell, but they were independent of whether resources were exotic or native. The principal drivers of total, microbial and invertebrate-mediated breakdown rates were lignin : N, lignin : P and fungal biomass, respectively. However, multiple regression using orthogonal predictors yielded even more efficient models of litter breakdown, as consumers responded to more than one aspect of resource quality. For example, fungal biomass and litter C : N both influenced invertebrate-mediated breakdown. 4. Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora. Consequently, the magnitude and direction of change in breakdown rates and, thus, resource depletion, will be driven to a large extent by the 957 biochemical traits (rather than taxonomic identity per se) of the resident and invading flora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.