Multileaf collimator (MLC) calibration and quality control is a time-consuming procedure typically involving the processing, scanning and analysis of films to measure leaf and collimator positions. Faster and more reliable calibration procedures are required for these tasks, especially with the introduction of intensity modulated radiotherapy which requires more frequent checking and finer positional leaf tolerances than previously. A routine quality control (QC) technique to measure MLC leaf bank gain and offset, as well as minor offsets (individual leaf position relative to a reference leaf), using an amorphous silicon electronic portal imaging device (EPID) has been developed. The technique also tests the calibration of the primary and back-up collimators. A detailed comparison between film and EPID measurements has been performed for six linear accelerators (linacs) equipped with MLC and amorphous silicon EPIDs. Measurements of field size from 4 to 24 cm with the EPID were systematically smaller than film measurements over all field sizes by 0.4 mm for leaves/back-up collimators and by 0.2 mm for conventional collimators. This effect is due to the gain calibration correction applied by the EPID, resulting in a 'flattening' of primary beam profiles. Linac dependent systematic differences of up to 0.5 mm in individual leaf/collimator positions were also found between EPID and film measurements due to the difference between the mechanical and radiation axes of rotation. When corrections for these systematic differences were applied, the residual random differences between EPID and film were 0.23 mm and 0.26 mm (1 standard deviation) for field size and individual leaf/back-up collimator position, respectively. Measured gains (over a distance of 220 mm) always agreed within 0.4 mm with a standard deviation of 0.17 mm. Minor offset measurements gave a mean agreement between EPID and film of 0.01+/-0.10 mm (1 standard deviation) after correction for the tilt of the EPID and small rotational misalignments between leaf banks and the back-up collimators used as a reference straight edge. Reproducibility of EPID measurements was found to be very high, with a standard deviation of <0.05 mm for field size and <0.1 mm for individual leaf/collimator positions for a 10x10 cm2 field. A standard set of QC images (three field sizes defined both by leaves only and collimators only) can be acquired in less than 20 min and analysed in 5 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.