Using machine learning (ML) to automate camera trap (CT) image processing is advantageous for time-sensitive applications. However, little is currently known about the factors influencing such processing. Here, we evaluate the influence of occlusion, distance, vegetation type, size class, height, subject orientation towards the CT, species, time-of-day, colour, and analyst performance on wildlife/human detection and classification in CT images from western Tanzania. Additionally, we compared the detection and classification performance of analyst and ML approaches. We obtained wildlife data through pre-existing CT images and human data using voluntary participants for CT experiments. We evaluated the analyst and ML approaches at the detection and classification level. Factors such as distance and occlusion, coupled with increased vegetation density, present the most significant effect on DP and CC. Overall, the results indicate a significantly higher detection probability (DP), 81.1%, and correct classification (CC) of 76.6% for the analyst approach when compared to ML which detected 41.1% and classified 47.5% of wildlife within CT images. However, both methods presented similar probabilities for daylight CT images, 69.4% (ML) and 71.8% (analysts), and dusk CT images, 17.6% (ML) and 16.2% (analysts), when detecting humans. Given that users carefully follow provided recommendations, we expect DP and CC to increase. In turn, the ML approach to CT image processing would be an excellent provision to support time-sensitive threat monitoring for biodiversity conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.