HDL and apoA-I exhibit an antiinflammatory effect on human monocytes by inhibiting activation of CD11b. ApoA-I acts through ABCA1, whereas HDL may act through several receptors.
The platelet-activating factor acetylhydrolases are enzymes that were initially characterized by their ability to hydrolyze platelet-activating factor (PAF). In human plasma, PAF acetylhydrolase (EC 3.1.1.47) circulates in a complex with low density lipoproteins (LDL) and high density lipoproteins (HDL). This association defines the physical state of PAF acetylhydrolase, confers a long half-life, and is a major determinant of its catalytic efficiency in vivo. The lipoprotein-associated enzyme accounts for all of the PAF hydrolysis in plasma but only two-thirds of the protein mass. To characterize the enzyme-lipoprotein interaction, we employed site-directed mutagenesis techniques. Two domains within the primary sequence of human PAF acetylhydrolase, tyrosine 205 and residues 115 and 116, were important for its binding to LDL. Mutation or deletion of those sequences prevented the association of the enzyme with lipoproteins. When residues 115 and 116 from human PAF acetylhydrolase were introduced into mouse PAF acetylhydrolase (which normally does not associate with LDL), the mutant mouse PAF acetylhydrolase associated with lipoproteins. To analyze the role of apolipoprotein (apo) B100 in the formation of the PAF acetylhydrolase-LDL complex, we tested the ability of PAF acetylhydrolase to bind to lipoproteins containing truncated forms of apoB. These studies indicated that the carboxyl terminus of apoB plays a key role in the association of PAF acetylhydrolase with LDL. These data on the molecular basis of the PAF acetylhydrolase-LDL association provide a new level of understanding regarding the pathway for the catabolism of PAF in human blood. Platelet-activating factor (PAF)1 is a phospholipid messenger synthesized by a variety of cells involved in host defense, such as endothelial cells, neutrophils, and monocytes (1). PAF functions both in normal physiological events and in pathological responses, particularly inflammation and allergy (1). High levels of PAF are associated with a variety of human diseases such as asthma, necrotizing enterocholitis, and sepsis, as judged by direct measurement of PAF levels (2-5), by the effects of PAF receptor antagonists (6 -9), and by the effects of an enzyme that inactivates PAF (10, 11). PAF is inactivated by hydrolysis of the sn-2 acetyl group, a reaction catalyzed by PAF acetylhydrolases (12, 13). The secreted form of PAF acetylhydrolase circulates in human plasma as a hydrophobic protein complexed with low density lipoproteins (LDL) and high density lipoproteins (HDL) (14,15).In addition to defining the physical state of PAF acetylhydrolase in the plasma compartment, the association of this enzyme with lipoproteins has important implications for catalysis. The association of the enzyme with LDL is a major determinant of its catalytic efficiency in vivo; when the substrate concentration is limiting, the LDL-associated activity accounts for virtually all of the PAF hydrolysis in plasma (16). Thus, the failure of PAF acetylhydrolase to bind to LDL would be predicted to bloc...
To determine the mechanisms by which human hepatic lipase (HL) contributes to the metabolism of apolipoprotein (apo) B-containing lipoproteins and high density lipoproteins (HDL) in vivo, we developed and characterized HL transgenic mice. HL was localized by immunohistochemistry to the liver and to the adrenal cortex. In hemizygous (hHLTg ؉/0 ) and homozygous (hHLTg ؉/؉ ) mice, postheparin plasma HL activity increased by 25-and 50-fold and plasma cholesterol levels decreased by 80% and 85%, respectively. In mice fed a high fat, high cholesterol diet to increase endogenous apoB-containing lipoproteins, plasma cholesterol decreased 33% (hHLTg ؉/0 ) and 75% (hHLTg ؉/؉ ). Both apoBcontaining remnant lipoproteins and HDL were reduced. To extend this observation, the HL transgene was expressed in human apoB transgenic (huBTg) and apoEdeficient (apoE ؊/؊ ) mice, both of which have high plasma levels of apoB-containing lipoproteins. (Note that the huBTg mice that were used in these studies were all hemizygous for the human apoB gene.) In both the huBTg,hHLTg ؉/0 mice and the apoE ؊/؊ ,hHLTg mice. However, the HDL were only minimally reduced. Thus, the catalytic activity of HL is critical for its effects on HDL but not for its effects on apoB-containing lipoproteins. These results provide evidence that HL can act as a ligand to remove apoB-containing lipoproteins from plasma.
Cardiovascular complications have emerged as a major concern for cancer patients. Many chemotherapy agents are cardiotoxic and some appear to also alter lipid profiles, although the mechanism for this is unknown. We studied plasma lipid levels in 12 breast cancer patients throughout their chemotherapy. Patients received either four cycles of doxorubicin and cyclophosphamide followed by weekly paclitaxel or three cycles of epirubicin, cyclophosphamide and 5’-fluorouracil followed by three cycles of docetaxel. Patients demonstrated a significant reduction (0.32 mmol/L) in high density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA1) levels (0.18 g/L) and an elevation in apolipoprotein B (apoB) levels (0.15 g/L) after treatment. Investigation of the individual chemotherapy agents for their effect on genes involved in lipoprotein metabolism in liver cells showed that doxorubicin decreased ATP binding cassette transporter A1 (ABCA1) via a downregulation of the peroxisomal proliferator activated receptor γ (PPARγ) and liver X receptor α (LXRα) transcription factors. In contrast, ABCA1 levels were not affected by cyclophosphamide or paclitaxel. Likewise, apoA1 levels were reduced by doxorubicin and remained unaffected by cyclophosphamide and paclitaxel. Doxorubicin and paclitaxel both increased apoB protein levels and paclitaxel also decreased low density lipoprotein receptor (LDLR) protein levels. These findings correlate with the observed reduction in HDL-C and apoA1 and increase in apoB levels seen in these patients. The unfavourable lipid profiles produced by some chemotherapy agents may be detrimental in the longer term to cancer patients, especially those already at risk of cardiovascular disease (CVD). This knowledge may be useful in tailoring effective follow-up care plans for cancer survivors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.