Cytotoxic T lymphocytes (CTLs) which carry the CD8 antigen recognize antigens that are presented on target cells by the class I major histocompatibility complex. CTLs are responsible for the killing of antigen-bearing target cells, such as virus-infected cells. Although CTL effectors can act alone when killing target cells, their differentiation from naive CD8-positive T cells is often dependent on 'help' from CD4-positive helper T (TH) cells. Furthermore, for effective CTL priming, this help must be provided in a cognate manner, such that both the TH cell and the CTL recognize antigen on the same antigen-presenting cell. One explanation for this requirement is that TH cells are needed to convert the antigen-presenting cell into a cell that is fully competent to prime CTL. Here we show that signalling through CD40 on the antigen-presenting cells can replace the requirement for TH cells, indicating that T-cell 'help', at least for generation of CTLs by cross-priming, is mediated by signalling through CD40 on the antigen-presenting cell.
Class I–restricted presentation is usually associated with cytoplasmic degradation of cellular proteins and is often considered inaccessible to exogenous antigens. Nonetheless, certain exogenous elements can gain entry into this so-called endogenous pathway by a mechanism termed cross-presentation. This is known to be effective for class I–restricted cytotoxic T lymphocyte (CTL) cross-priming directed against a variety of exogenous tumor, viral, and minor transplantation antigens. The related effect of cross-tolerance can also effectively eliminate responses to selected self components. In both cases, this presentation appears to require the active involvement of a bone marrow–derived antigen presenting cell (APC). Here, we show that CTL induction by cross-priming with cell-associated ovalbumin requires the active involvement of CD4+ helper T cells. Importantly, this CD4+ population is only effective when both the helper and CTL determinants are recognized on the same APC. Moreover, we would argue that the cognitive nature of this event suggests that the CD4+ T cell actively modifies the APC, converting it into an effective stimulator for the successful priming of the CTL precursor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.