We have identified the key protein substrate of gelatinase B/MMP-9 (GB) that is cleaved in vivo during dermal-epidermal separation triggered by antibodies to the hemidesmosomal protein BP180 (collagen XVII, BPAG2). Mice deficient in either GB or neutrophil elastase (NE) are resistant to blister formation in response to these antibodies in a mouse model of the autoimmune disease bullous pemphigoid. Disease develops upon complementation of GB -/- mice with NE -/- neutrophils or NE -/- mice with GB -/- neutrophils. Only NE degrades BP180 and produces dermal-epidermal separation in vivo and in culture. Instead, GB acts upstream to regulates NE activity by inactivating alpha1-proteinase inhibitor (alpha1-PI). Excess NE produces lesions in GB -/- mice without cleaving alpha1-PI. Excess alpha1-PI phenocopies GB and NE deficiency in wild-type mice.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen implicated in a variety of devastating conditions. Its flexibility as a pathogen is attributed to a myriad of virulence factors and regulatory elements that respond to prevailing environmental conditions. ExoS and ExoT are type III secreted effector proteins, regulated by the transcriptional activator ExsA, that can inhibit invasion of epithelial cells by cytotoxic strains of P. aeruginosa. This study sought to understand why invasive strains, which can secrete both ExoS and ExoT, still invade epithelial cells. The results showed that LasA and elastase (LasB), which are regulated by the Las and Rhl quorum-sensing systems, modulated P. aeruginosa invasion. Mutation of lasA and/or lasB reduced P. aeruginosa invasion, which was not fully restored by extracellularly added LasB, P. aeruginosa conditioned medium containing LasA and LasB, or EGTA pretreatment of cells. This indicated that protease effects on invasion involved factors additional to tight junction disruption and subsequent alterations to cell polarity. Upon mutation of lasA and/or lasB, steady-state levels of ExoS and ExoT were increased in culture medium of P. aeruginosa grown under conditions stimulatory for these toxins. The increase in ExoS was significantly correlated with reduced invasion. In vitro experiments showed that purified LasB degraded recombinant ExoS. Taken together, these studies suggest a mechanism by which invasive strains can synthesize inhibitors of invasion, ExoS and ExoT, yet still invade epithelial cells. By this mechanism, LasA and LasB decrease the levels of the toxins directly or indirectly, and thus reduce inhibition of invasion.
Fibroblasts migrate into and repopulate connective tissue wounds. At the wound edge, fibroblasts differentiate into myofibroblasts, and they promote wound closure. Regulated fibroblast-to-myofibroblast differentiation is critical for regenerative healing. Previous studies have focused on the role in fibroblasts of urokinase plasmingen activator/urokinase plasmingen activator receptor (uPA/uPAR), an extracellular protease system that promotes matrix remodeling, growth factor activation, and cell migration. Whereas fibroblasts have substantial uPA activity and uPAR expression, we discovered that cultured myofibroblasts eventually lost cell surface uPA/uPAR. This led us to investigate the relevance of uPA/uPAR activity to myofibroblast differentiation. We found that fibroblasts expressed increased amounts of full-length cell surface uPAR (D1D2D3) compared with myofibroblasts, which had reduced expression of D1D2D3 but increased expression of the truncated form of uPAR (D2D3) on their cell surface. Retaining full-length uPAR was found to be essential for regulating myofibroblast differentiation, because 1) protease inhibitors that prevented uPAR cleavage also prevented myofibroblast differentiation, and 2) overexpression of cDNA for a noncleavable form of uPAR inhibited myofibroblast differentiation. These data support a novel hypothesis that maintaining full-length uPAR on the cell surface regulates the fibroblast to myofibroblast transition and that down-regulation of uPAR is necessary for myofibroblast differentiation. INTRODUCTIONMyofibroblast differentiation from fibroblasts is a critical component of the healing process. Regenerative healing (without scarring) results from the successful execution of what have been characterized as three distinct phases of wound healing. In the first phase, fibroblasts that migrate into the wound secrete proteases, extracellular matrix (ECM) molecules, and growth factors. In the second phase, fibroblasts differentiate into nonmotile, wound-contracting myofibroblasts that also secrete ECM proteins and remodel the ECM (Jester et al., 1995;Mohan et al., 2003;Netto et al., 2005). In the third phase, after wound closure, myofibroblasts usually disappear by apoptosis (Desmouliere et al., 1995). Pathological states such as hypertrophic scars, liver cirrhosis, idiopathic lung fibrosis, and glomerulosclerosis are characterized by the persistence of myofibroblasts, which contribute to disease progression by overproduction of ECM and by excessive contraction (Desmouliere et al., 2003;Gabbiani, 2003).To better understand the molecular basis for the fibroblast to myofibroblast transition, we have focused on the role of the urokinase plasmingen activator (uPA) pathway during wound healing. uPA is an extracellular serine protease that binds to its receptor, uPAR, and generates plasmin from plasminogen at the cell-matrix interface. Plasmin is a broadspectrum protease that not only cleaves fibrin and other ECM proteins but also promotes cell migration by activating matrix-sequestered metallopr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.