Based on clinical and experimental work two new types of volumetric overload shocks are reported: volumetric overload shock type one and type two depending on the type of fluid causing their induction. Volumetric overload shock type one is induced by sodium-free fluids such as glycine, glucose, mannitol and sorbitol and is characterized with acute dilutional hyponatraemia. Volumetric overload shock type 2 is induced with sodium-based fluids normal saline and plasma substitutes used for resuscitation of the critically ill and has no serological marker. It presents with the multiple vital organs dysfunction or failure syndrome or the adult respiratory distress syndrome. Hypertonic sodium is an effective treatment when given early adequately. The underlying pathophysiology is discussed. An alternative to Starling's law for the capillary interstitial fluid transfer is given. Hydrodynamic of a porous orifice tube akin to capillary with a surrounding Chamber akin to the interstitial fluid space demonstrated a rapid dynamic magnetic field-like fluid circulation between the surrounding chamber and the lumen of the G tube that represent an adequate replacement for Starling's law.
The transurethral prostatectomy syndrome (TURS) is defined as severe vascular hypotension reaction that complicates endoscopic surgery as a result of massive irrigating fluid absorption causing severe acute dilution hyponatraemia (HN) of <120 mmol/l. The vascular shock is usually mistaken for one of the recognized shocks and Volumetric Overload Shock type 1 (VOS1) is overlooked making Volumetric Overload Shock Type 2 (VOS2) unrecognizable. VOS1 is induced by the infusion of 3.5-5 liters of sodium-free fluids and is known as TURS or HN shock. VOS2 is induced by 12-14 liters of sodium-based fluids and is known as the adult respiratory distress syndrome. The most effective treatment for VOS1 and VOS2 is hypertonic sodium of 5% NaCl or 8.4% Sodium Bicarbonate. The literature is reviewed and the underlying patho-etiology is discussed. As Starling's law for the capillary-interstitial fluid transfer proved wrong an alternative mechanism was found by studying the hydrodynamics of the porous orifice (G) tube. Incorporating the G tube in a chamber (C), representing the interstitial space surrounding a capillary, demonstrated a rapid dynamic magnetic field-like fluid circulation between the C and G tube lumen. The G-C phenomenon is autonomous having both filtration and absorption forces making a true replacement for Starling's law.
Introduction and objective: Circulatory shock affecting patients with the TURP syndrome has frequently been described but has usually been mistaken for hypovolaemic blood loss, cardiogenic or septicaemic shock. Here we report a prospective study that proves the patho-aetiology of the TURP syndrome is induced by volumetric overload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.