Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Over the past decade, gut microbiota dysbiosis has been linked to many health disorders; however, the detailed mechanism of this correlation remains unclear. Gut microbiota can communicate with the host through immunological or metabolic signalling. Recently, microbiota-released extracellular vesicles (MEVs) have emerged as significant mediators in the intercellular signalling mechanism that could be an integral part of microbiota-host communications. MEVs are small membrane-bound vesicles that encase a broad spectrum of biologically active compounds (i.e., proteins, mRNA, miRNA, DNA, carbohydrates, and lipids), thus mediating the horizontal transfer of their cargo across intra- and intercellular space. In this study, we provide a comprehensive and in-depth discussion of the biogenesis of microbial-derived EVs, their classification and routes of production, as well as their role in inter-bacterial and inter-kingdom signaling.
Gut microbiota dysbiosis has been linked to many heath disorders including hepatitis C virus (HCV) infection. However, profiles of the gut microbiota alterations in HCV are inconsistent in the literature and are affected by the treatment regimens. Using samples collected prior to treatment from newly diagnosed patients, we characterized the gut microbiota structure in HCV patients as compared to healthy controls. Treatment-naive HCV microbiota showed increased diversity, an increased abundance of Prevotella, Succinivibrio, Catenibacterium, Megasphaera, and Ruminococcaceae, and a lower abundance of Bacteroides, Dialister, Bilophila, Streptococcus, parabacteroides, Enterobacteriaceae, Erysipelotrichaceae, Rikenellaceae, and Alistipes. Predicted community metagenomic functions showed a depletion of carbohydrate and lipid metabolism in HCV microbiota along with perturbations of amino acid metabolism. Receiver-operating characteristic analysis identified five disease-specific operational taxonomic units (OTUs) as potential biomarkers of HCV infections. Collectively, our findings reveal the alteration of gut microbiota in treatment naive HCV patients and suggest that gut microbiota may hold diagnostic promise in HCV infection.
Behavior and mood disorders have been linked to gut microbiota dysbiosis through the “microbiota-gut-brain axis”. Microbiota-targeting interventions are promising therapeutic modalities to restore or even maintain normal microbiome composition and activity in these disorders. Here, we test the impact of a commercial synbiotic formulation on gut microbiota composition and metabolic activity. We employed an ex-vivo continuous fermentation model that simulates the proximal colon to assess the effect of this formulation on microbiota structure and functionality as compared to no treatment control and microcrystalline cellulose as a dietary fiber control. The test formulation did not alter the diversity of gut microbiota over 48 h of treatment. However, it induced the enrichment of Lactobacillus, Collinsella and Erysipelotrichaceae. The test formulation significantly increased the level of microbiota-generated butyrate within 12 h of treatment as compared to 24 h required by microcrystalline cellulose to boost its production. The test formulation did not lead to a significant change in amino acid profiles. These results provide evidence of potential benefits related to synbiotic effects and general gut health and support the potential of this food formulation as a therapeutic dietary intervention in mood and behavior disorders.
The gut–liver-axis is a bidirectional coordination between the gut, including microbial residents, the gut microbiota, from one side and the liver on the other side. Any disturbance in this crosstalk may lead to a disease status that impacts the functionality of both the gut and the liver. A major cause of liver disorders is hepatitis C virus (HCV) infection that has been illustrated to be associated with gut microbiota dysbiosis at different stages of the disease progression. This dysbiosis may start a cycle of inflammation and metabolic disturbance that impacts the gut and liver health and contributes to the disease progression. This review discusses the latest literature addressing this interplay between the gut microbiota and the liver in HCV infection from both directions. Additionally, we highlight the contribution of gut microbiota to the metabolism of antivirals used in HCV treatment regimens and the impact of these medications on the microbiota composition. This review sheds light on the potential of the gut microbiota manipulation as an alternative therapeutic approach to control the liver complications post HCV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.