The design of hardware-friendly architectures with low computational overhead is desirable for low latency realization of CNN on resource-constrained embedded platforms. In this work, we propose CAxCNN, a Canonic Sign Digit (CSD) based approximation methodology for representing the filter weights of pre-trained CNNs.The proposed CSD representation allows the use of multipliers with reduced computational complexity. The technique can be applied on top of state-of-the-art CNN quantization schemes in a complementary manner. Our experimental results on a variety of CNNs, trained on MNIST, CIFAR-10 and ImageNet datasets, demonstrate that our methodology provides CNN designs with multiple levels of classification accuracy, without requiring any retraining, and while having a low area and computational overhead. Furthermore, when applied in conjunction with a state-of-art quantization scheme, CAxCNN allows the use of multipliers, which offer 77% logic area reduction, as compared to their accurate counterpart, while incurring a drop in Top-1 accuracy of just 5.63% for a VGG-16 network trained on ImageNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.