Abstract-Skype is a peer-to-peer VoIP client developed in 2003 by the organization who created Kazaa. Skype claims that it can work almost seamlessly across NATs and firewalls and has better voice quality than other VoIP clients. It encrypts calls end-to-end, and stores user information in a decentralized fashion. Skype also supports instant messaging and conferencing. This paper analyzes key Skype functions such as login, NAT and firewall traversal, call establishment, media transfer, codecs, and conferencing under three different network setups. Analysis is performed by careful study of the Skype network traffic and by intercepting the shared library and system calls of Skype. We draw a map of super nodes to which Skype establishes a TCP connection at login.
This specification defines REsource LOcation And Discovery (RELOAD), a peer-to-peer (P2P) signaling protocol for use on the Internet. A P2P signaling protocol provides its clients with an abstract storage and messaging service between a set of cooperating peers that form the overlay network. RELOAD is designed to support a P2P Session Initiation Protocol (P2PSIP) network, but can be utilized by other applications with similar requirements by defining new usages that specify the Kinds of data that need to be stored for a particular application. RELOAD defines a security model based on a certificate enrollment service that provides unique identities.
Abstract-TCP has traditionally been considered inappropriate for real-time applications. Nonetheless, popular applications such as Skype use TCP since UDP packets cannot pass through restrictive network address translators (NATs) and firewalls. Motivated by this observation, we study the delay performance of TCP for real-time media flows. We develop an analytical performance model for the delay of TCP. We use extensive experiments to validate the model and to evaluate the impact of various TCP mechanisms on its delay performance. Based on our results, we derive the working region for VoIP and live video streaming applications and provide guidelines for delay-friendly TCP settings. Our research indicates that simple application-level schemes, such as packet splitting and parallel connections, can reduce the delay of real-time TCP flows by as much as 30% and 90%, respectively.
Software routers can lead us from a network of special-purpose hardware routers to one of general-purpose extensible infrastructureif, that is, they can scale to high speeds. We identify the challenges in achieving this scalability and propose a solution: a cluster-based router architecture that uses an interconnect of commodity server platforms to build software routers that are both incrementally scalable and fully programmable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.