Functionally impaired people always have difficulty accomplishing activities of daily living. In this regard, tasks including toileting and bathing have a higher prevalence rate of injuries and greater risk of falling. In this study, a body-transfer wheelchair was developed to assist people in transferring from bed to wheelchair for bathing, and toileting. The bodytransfer wheelchair is a semi-automatic wheelchair that has features such as a controlled leg and backrest, linkage commode slot, and height adjustment. The wheelchair consists of a seat and a main frame that can be detached to enable bathtub transfer. This mechanism lets the user stay on the seat while being transferred into the bathtub without any risk of falling. A linkage mechanism was developed as a part of the seat for ease of toileting. Kinematic and force analysis was conducted to calculate the force required for each actuator. It has been proved by the experimental results that the wheelchair can securely and comfortably transfer a patient from the bed to the toilet or bathtub. A survey has been conducted to evaluate the wheelchair prototype design idea. Two focus groups were chosen: one comprised of functionally impaired people, and the other comprised of caregivers. The results of the survey show that 60% of both functionally impaired people and caregivers would like to use the body-transfer wheelchair for toileting and bathing purpose. Additionally, on average 65% of both focus groups find it convenient to operate the body-transfer wheelchair independently.
Assistive devices can significantly improve caregivers’ ability to help disabled people with their daily activities. Existing assistive devices are not fully capable of safe transfer and are still in their early stages of development. In this research, a body-transfer system is designed and developed to ensure that the posture and body angle of the person in the sagittal plane remains unaltered while transferring from bed to wheelchair and vice versa. Two independently controlled conveyor belts (2-DOF) mounted on the indigenously developed bed are employed to transfer the disabled person using a sliding approach. Additionally, a wheelchair with conveyor belts that are fully automated is used to carry and transfer the user to and from the wheelchair. Furthermore, an integrated control architecture has been developed for safely operating the entire body-transfer system (from an indigenously developed bed and wheelchair). Finally, an experimental assessment of the body-transfer system’s performance has been conducted. The experimental findings demonstrate that the system can transfer up to 120 kg of body weight while the user’s posture remains unaltered in the sagittal plane. Users perceive a reduction in wrist and shoulder pain index using the body-transfer system. The system has great potential for relocating disabled persons safely while reducing the load on caregivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.