AbstrakPendidikan adalah salah satu faktor yang mempengaruhi pembangunan manusia. Salah satu faktor yang menunjang baik atau tidaknya pendidikan adalah sekolah. Baik atau tidaknya mutu suatu sekolah dinyatakan dengan akreditasi sekolah. Status akreditasi sekolah merupakan data dengan skala ordinal. Salah satu metode statistika yang dapat dipakai untuk klasifikasi data yang bersifat ordinal adalah regresi logistik ordinal. Tujuan dari penelitian ini yaitu untuk menentukan model akreditasi SMA di Kota Ambon berdasarkan faktor-faktor yang terdapat dalam profil sekolah dengan menggunakan Regresi Logistik Ordinal. Hasil penelitian menunjukan bahwa variabel yang signifikan mempengaruhi akreditasi SMA di Kota Ambon dengan tingkat kepercayaan sebesar 95% adalah jumlah guru (X4). AbstractEducation is one of the factors that affect human development. One of the factor that either support or not is school education. The quality of a school is declared by the accreditation. Accreditation status of the school is an ordinal scale data. One of the statistical methods that can be used for classification of data which are ordinal is an ordinal logistic regression. The purpose of this study is to determine the model of high school accreditation in Ambon based on the factors contained in the school profiles using Ordinal Logistic Regression. The results showed that the variables that significantly affect the accreditation of high schools in the city of Ambon with a confidence level of 95% are the number of teachers (X4).
Multiple regression analysis is a statistical analysis used to predict the effect of several independent variables on the dependent variable. The problem that often occurs in multiple linear regression models is multicollinearity which is a condition of a strong relationship between independent variables. To overcome the problem of multicollinearity, the Partial Least Square method is used. This method reduces independent variables that have no significant effect on the dependent variable, then new variables with smaller dimensions are formed which are linear combinations of the independent variables, therefore the partial significance test (t test) becomes an important part in the formation of PLS components. Furthermore, using the PLS method, we obtain: Ŷ = 126.220 + 12.034 (Income) + 12.437 (Number of Family Members) + 12.959 (House Area) +11.919 (Number of Rooms) +12.274 (Number of Electronic Devices)
Infant mortality is an experienced child death before the age of one year. Regression analysis is a statistical analysis that aims to model the relationship between responsevariables (Y) with predictor variables (X). If the Poisson distributed response variables (Y), the regression model used was Poisson regression. The purpose of this research is to get aPoisson regression model according to the significant factors that influence the infant mortality. The results shows that the significant factors are influence the infant mortality asthe presentation of non medical childbirth (X1) and quantity of medical facility (X7). The case studies are infant mortality in Provinsi Maluku in 2010.
ABSTRAKAntrian adalah suatu garis tunggu dari orang/satuan yang memerlukan pelayanan dari satu atau lebih fasilitas layanan, misalnya antrian pada teller di bank. Pada bank dengan jumlah teller yang sedikit atau tingkat pelayanan yang rendah seringkali mengakibatkan antrian yang panjang di depan teller sehingga nasabah yang akan dilayani menunggu dalam jangka waktu yang lama. Tujuan penelitian ini yaitu untuk menentukan jumlah teller yang optimal pada Bank Mandiri Cabang Ambon dengan menggunakan Model Tingkat Aspirasi. Hasil penelitian menunjukan bahwa jumlah teller yang optimal ialah 4 teller.
AbstrakKanker serviks atau kanker leher rahim adalah jenis penyakit kanker yang terjadi pada daerah leher rahim, yaitu bagian rahim yang terletak di bawah yang membuka ke arah liang vagina. Berawal dari leher rahim, apabila telah memasuki tahap lanjut, kanker ini bisa menyebar ke organ-organ lain di seluruh tubuh. Regresi logistik biner merupakan salah satu pendekatan model matematis yang digunakan untuk menganalisis hubungan beberapa faktor dengan sebuah variabel yang bersifat dikotomus (biner). Tujuan dari penelitian ini adalah menentukan faktor-faktor yang mempengaruhi penyebab kanker leher rahim di kota Ambon dengan menggunakan regresi logistik biner. Hasil penelitian menunjukan bahwa faktorfaktor yang mempengaruhi kanker leher rahim di kota Ambon dengan menggunakan regresi logistik biner adalah usia ( 1 ) dan frekuensi menikah ( 4 ) dengan ketepatan pengklasifikasian penderita dan non penderita kanker leher rahim berturut-turut adalah 57,14% dan 66,67%. Secara keseluruhan, model regresi logistik yang telah diperoleh dapat mengklasifikasikan responden sebesar 61,9%. AbstractCervical cancer is a type of cancer that occurs in the cervical region that is part of the uterus that is located under the opening to the vagina. Starting from the cervix if it has entered the stage, this cancer can spread to other organs throughout the body. Binary logistic regression is one approach used a mathematical model to analyze the relationship of several factors with a variable is dichotomous (binary). The purpose of this study is to determine the factors that influence the cause of cervical cancer in the city of Ambon by using binary logistic regression. The results showed that the factors that affect cervical cancer in the city of Ambon by using binary logistic regression are age ( 1 ) and frequency married ( 4 ) with the accuracy of the classification of patients and non-patients respectively was 57.14% and 66.67%. Overall, the logistic regression model that has been obtained can classify respondents of 61.9%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.