The precise, size-selective assembly of nanoparticles gives rise to many applications where the assembly of nano building blocks with different biological or chemical functionalizations is necessary. We introduce a simple, fast, reproducible-directed assembly technique that enables a complete sorting of nanoparticles with single-particle resolution. Nanoparticles are size-selectively assembled into prefabricated via arrays using a sequential template-directed electrophoretic assembly method. Polystyrene latex (PSL) nanoparticles with diameters ranging from 200 to 50 nm are selectively assembled into vias comparable to nanoparticle diameter. We investigate the effects of particle size and via size on the sorting efficiency. We show that complete sorting can be achieved when the size of the vias is close to the diameter of the nanoparticles and the size distribution of the chosen nanoparticles does not overlap. The results also show that it is necessary to keep the electric field on during the insertion and removal of the template. To elucidate the versatility and nil effects that the electrophoresis assembly technique has on the assembled nanoparticle characteristics, we have assembled cancer-specific monoclonal antibody-2C5-coated nanoparticles and have also shown that they can successfully measure low concentrations of the nucleosome (NS) antigen.
This paper describes a microscale in vivo sensor platform device for the simultaneous detection of multiple biomarkers. We designed the polymer-based biosensors incorporating multiple active isolated areas, as small as 70 μm × 70 μm, for antigen detection. The fabrication approach involved conventional micro- and nano-fabrication processes followed by site-specific electrophoretic directed assembly of antibody-functionalized nanoparticles. To ensure precise and large-scale manufacturing of these biosensors, we developed a semi-automated system for the attachment of the 250-μm biosensor to a 300-μm catheter probe. Our fabrication and post-processing procedures should enable large-scale production of such biosensor devices at lower manufacturing cost. The principle of detection with these biosensors involved a simple fluorescence-based enzyme-linked immunosorbent assay. These biosensors exhibit high selectivity (ability to selectively detect multiple biomarkers of different diseases), specificity (ability to target generic to specific disease biomarkers), rapid antigen uptake, and low detection limits (for carcinoembryonic antigen, 31.25 pg mL(-1); for nucleosomes, 62.5 pg mL(-1)), laying the foundation for potential early detection of various diseases.
Biomarkers are emerging as potentially important diagnostic tools for cancer and many other diseases. However, many current detection systems for suffer from insufficient sensitivity. To address this concern, we developed a highly sensitive biosensor, featuring monoclonal antibody-coated polystyrene nanobeads assembled in the trenches of a microchip, for the detection of cancer biomarkers. These biosensors detected nucleosomes and carcinoembryonic antigen in serum at concentrations of 62.5 and 15.6 pg/mL, respectively. Very low detection limits that suggest such devices might be beneficial for the early detection of tumors and for monitoring of patients in remission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.