We report a model for atomic force microscopy by means of computer simulations of molecular brushes on surfaces of biological interest such as normal and cancerous cervical epithelial cells. Our model predicts that the force needed to produce a given indentation on brushes that can move on the surface of the cell (called “liquid” brushes) is the same as that required for brushes whose ends are fixed on the cell’s surface (called “solid” brushes), as long as the tip of the microscope covers the entire area of the brush. Additionally, we find that cancerous cells are softer than normal ones, in agreement with various experiments. Moreover, soft brushes are found to display larger resistance to compression than stiff ones. This phenomenon is the consequence of the larger equilibrium length of the soft brushes and the cooperative association of solvent molecules trapped within the brushes, which leads to an increase in the osmotic pressure. Our results show that a careful characterization of the brushes on epithelial cells is indispensable when determining the mechanical response of cancerous cells.
<abstract>
<p>Many of the simplistic hydrophobic-polar lattice models, such as Dill's model (called <bold>Model 1</bold> herein), are aimed to fold structures through hydrophobic-hydrophobic interactions mimicking the well-known hydrophobic collapse present in protein structures. In this work, we studied 11 designed hydrophobic-polar sequences, S<sub>1</sub>-S<sub>8</sub> folded in 2D-square lattice, and S<sub>9</sub>-S<sub>11</sub> folded in 3D-cubic lattice. And to better fold these structures we have developed <bold>Model 2</bold> as an approximation to convex function aimed to weight hydrophobic-hydrophobic but also polar-polar contacts as an augmented version of <bold>Model 1</bold>. In this partitioned approach hydrophobic-hydrophobic ponderation was tuned as <italic>α</italic>-1 and polar-polar ponderation as <italic>α</italic>. This model is centered in preserving required hydrophobic substructure, and at the same time including polar-polar interactions, otherwise absent, to reach a better folding score now also acquiring the polar-polar substructure. In all tested cases the folding trials were better achieved with <bold>Model 2</bold>, using <italic>α</italic> values of 0.05, 0.1, 0.2 and 0.3 depending of sequence size, even finding optimal scores not reached with <bold>Model 1</bold>. An important result is that the better folding score, required the lower <italic>α</italic> weighting. And when <italic>α</italic> values above 0.3 are employed, no matter the nature of the hydrophobic-polar sequence, banning of hydrophobic-hydrophobic contacts started, thus yielding misfolding of sequences. Therefore, the value of <italic>α</italic> to correctly fold structures is the result of a careful weighting among hydrophobic-hydrophobic and polar-polar contacts.</p>
</abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.