This paper describes the work performed by ONERA and Airbus to solve several aerodynamic optimization problems proposed in 2013 by the AIAA Optimization Discussion Group (ADODG). Three of the four test cases defined by this group have been addressed, respectively a 2D invicid, non-lifting, transonic airfoil optimization problem, a 2D RANS transonic airfoil optimization problem and a 3D RANS transonic wing optimization problem. All three problems have been investigated using local, gradient-based, optimization techniques and the elsA[1][2] CFD software and its adjoint capability. Through these three optimization exercises, several generic issues introduced by aerodynamic gradient-based optimization have been investigated. Among the investigated aspects are the impact of the geometry parameterization (nature and dimension), of the accuracy of the gradient calculation method, optimization algorithm and presence of constraints in the optimization problem.
NomenclatureC p = pressure coefficient CD = total drag coefficient CDp = pressure drag coefficient CDf = friction drag coefficient CDw = wave drag coefficient CDvp = viscous pressure drag coefficient CL = lift coefficient CM = pitching moment coefficient c ref = chord reference d.c. = drag counts (0.0001) Ma = Mach number Re = Reynolds number AoA = Angle of attack f = objective function g = inequality constraint 1
This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed.
The present work is relevant from the numerical prediction of aircraft noise via aeroacoustics hybrid methods. It is part of a more extensive effort, which final objective is the development of a robust and accurate CFD-CAA weak coupling methodology. Within this framework, we focus here on the so-called surface coupling approach, a technique that allows conducting weakly coupled CFD-CAA calculations. Such approach (which had been previously developed and validated on simpler cases) is here applied to a ralistic problem of aircraft noise, given by the acoustic emission of a nose landing gear in approach flight (a configuration that was addressed in the Airbus LAGooN program). For doing so, several preliminary tasks are first addressed, which are carefully handled and thoroughly detailed. Two CFD-CAA coupled calculations are then conducted, both being based on i) a same CFD dataset coming from an unsteady aerodynamic calculation (zonal DES), and ii) two distinct CAA calculations of different characteristics ; first, a CFD-CAA calculation is conducted for the so-called 'baseline' configuration (i.e. isolated gear within a free-field flow), so as to validate the coupling procedure, as well as to generate a reference solution for subsequent assessment of the mean flow effects induced by the experimental set-up. The validation of the coupling procedure is conducted via a direct comparison of the CFD-CAA results with either experimental or numerical (CFD, CFD-FWH) outputs obtained in the near-, mid, and/or far-field. With the view of assessing the mean flow effects, an alternative CFD-CAA calculation is then performed, which incorporates the realistic sheared jet flow characterizing the anechoic facility. This allows assessing the (partial) convection and refraction effects induced by such jet mean flow, which helps underscoring better the relevance of the present CFD-CAA hybrid approach when it comes to handle real-life noise problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.