Lithium-ion battery (Li-ion) is an energy storage device widely used in various types of electronic devices. The cathode is one of its main components, which was developed because it accelerates the transfer of electrons and battery cycle stability. Therefore, the LiNixMnyCozO2 (LNMC) cathode material, which has a discharge capacity of less than 200 mAh g−1, was further developed. Li-Mn-rich oxide cathode material (LMR-NMC) has also received considerable attention because it produces batteries with a specific capacity of more than 250 mAh g−1 at high voltages. The structure, synthesis method, and sintering temperature in the fabrication of LMR-NMC cathode materials affect battery performance. Furthermore, manganese sulphate fertilizer replaces manganese sulphate as raw material for LMR-NMC cathode due to its lower price. The method used in this study was implemented by reviewing previous literature related to Li-ion batteries, Li-ion battery cathodes, synthesis of LMR-NMC cathode materials, and the potential of manganese fertilizers. This review aims to find out the effect of structure, synthesis method, and sintering temperature on LMR-NMC cathodes made from manganese sulphate fertilizer to obtain a Li-ion battery with a high specific capacity, more environmentally friendly, has good cycle stability, and a high level of safety and lower production costs.
Li-ion batteries are one of the most popular energy storage devices widely applied to various kinds of equipment, such as mobile phones, medical and military equipment, etc. Therefore, due to its numerous advantages, especially on the NMC type, there is a predictable yearly increase in Li-ion batteries' demand. However, even though it is rechargeable, Li-ion batteries also have a usage time limit, thereby increasing the amount of waste disposed of in the environment. Therefore, this study aims to determine the optimum conditions and the potential and challenges from the waste Li-ion battery recycling process, which consists of pretreatment, metal extraction, and product preparation. Data were obtained by studying the literature related to Li-ion battery waste's recycling process, which was then compiled into a review. The results showed that the most optimum recycling process of Li-ion batteries consists of metal extraction by a leaching process that utilizes H2SO4 and H2O2 as leaching and reducing agents, respectively. Furthermore, it was proceeding with the manufacturing of a new Li-ion battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.